Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Immunol ; 20(4): 493-502, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833792

RESUMO

Interferon-stimulated genes (ISGs) form the backbone of the innate immune system and are important for limiting intra- and intercellular viral replication and spread. We conducted a mass-spectrometry-based survey to understand the fundamental organization of the innate immune system and to explore the molecular functions of individual ISGs. We identified interactions between 104 ISGs and 1,401 cellular binding partners engaging in 2,734 high-confidence interactions. 90% of these interactions are unreported so far, and our survey therefore illuminates a far wider activity spectrum of ISGs than is currently known. Integration of the resulting ISG-interaction network with published datasets and functional studies allowed us to identify regulators of immunity and processes related to the immune system. Given the extraordinary robustness of the innate immune system, this ISG network may serve as a blueprint for therapeutic targeting of cellular systems to efficiently fight viral infections.


Assuntos
Imunidade Inata , Interferons/fisiologia , Mapeamento de Interação de Proteínas , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Expressão Gênica , Glicoproteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Imunidade Inata/genética , Espectrometria de Massas , Receptores CCR4/metabolismo , Receptores de Peptídeos/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo
2.
EMBO J ; 42(23): e114473, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37872872

RESUMO

The microtubule motor dynein mediates polarised trafficking of a wide variety of organelles, vesicles and macromolecules. These functions are dependent on the dynactin complex, which helps recruit cargoes to dynein's tail and activates motor movement. How the dynein-dynactin complex orchestrates trafficking of diverse cargoes is unclear. Here, we identify HEATR5B, an interactor of the adaptor protein-1 (AP1) clathrin adaptor complex, as a novel player in dynein-dynactin function. HEATR5B was recovered in a biochemical screen for proteins whose association with the dynein tail is augmented by dynactin. We show that HEATR5B binds directly to the dynein tail and dynactin and stimulates motility of AP1-associated endosomal membranes in human cells. We also demonstrate that the Drosophila HEATR5B homologue is an essential gene that selectively promotes dynein-based transport of AP1-bound membranes to the Golgi apparatus. As HEATR5B lacks the coiled-coil architecture typical of dynein adaptors, our data point to a non-canonical process orchestrating motor function on a specific cargo. We additionally show that HEATR5B promotes association of AP1 with endosomal membranes independently of dynein. Thus, HEATR5B co-ordinates multiple events in AP1-based trafficking.


Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Humanos , Dineínas/metabolismo , Complexo Dinactina/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Biológico/fisiologia , Microtúbulos/metabolismo , Endossomos/metabolismo
3.
Nature ; 594(7862): 246-252, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33845483

RESUMO

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Proteoma/metabolismo , Proteômica , SARS-CoV-2/patogenicidade , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Animais , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Conjuntos de Dados como Assunto , Avaliação Pré-Clínica de Medicamentos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Fosforilação , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Proteoma/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Fator de Crescimento Transformador beta/metabolismo , Ubiquitinação , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Viroporinas/metabolismo
4.
J Virol ; 97(11): e0087823, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37905840

RESUMO

IMPORTANCE: Remodeling of the cellular endomembrane system by viruses allows for efficient and coordinated replication of the viral genome in distinct subcellular compartments termed replication organelles. As a critical step in the viral life cycle, replication organelle formation is an attractive target for therapeutic intervention, but factors central to this process are only partially understood. In this study, we corroborate that two viral proteins, nsp3 and nsp4, are the major drivers of membrane remodeling in SARS-CoV-2 infection. We further report a number of host cell factors interacting with these viral proteins and supporting the viral replication cycle, some of them by contributing to the formation of the SARS-CoV-2 replication organelle.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Organelas/metabolismo , Proteômica , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
5.
Nature ; 561(7722): 253-257, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30177828

RESUMO

Zika virus (ZIKV) has recently emerged as a global health concern owing to its widespread diffusion and its association with severe neurological symptoms and microcephaly in newborns1. However, the molecular mechanisms that are responsible for the pathogenicity of ZIKV remain largely unknown. Here we use human neural progenitor cells and the neuronal cell line SK-N-BE2 in an integrated proteomics approach to characterize the cellular responses to viral infection at the proteome and phosphoproteome level, and use affinity proteomics to identify cellular targets of ZIKV proteins. Using this approach, we identify 386 ZIKV-interacting proteins, ZIKV-specific and pan-flaviviral activities as well as host factors with known functions in neuronal development, retinal defects and infertility. Moreover, our analysis identified 1,216 phosphorylation sites that are specifically up- or downregulated after ZIKV infection, indicating profound modulation of fundamental signalling pathways such as AKT, MAPK-ERK and ATM-ATR and thereby providing mechanistic insights into the proliferation arrest elicited by ZIKV infection. Functionally, our integrative study identifies ZIKV host-dependency factors and provides a comprehensive framework for a system-level understanding of ZIKV-induced perturbations at the levels of proteins and cellular pathways.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Proteoma/análise , Proteômica , Zika virus/patogenicidade , Animais , Diferenciação Celular , Linhagem Celular , Chlorocebus aethiops , Interações Hospedeiro-Patógeno/genética , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas , Proteoma/genética , Proteoma/metabolismo , RNA Interferente Pequeno/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo
6.
J Virol ; 95(21): e0131021, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34379504

RESUMO

Dengue virus (DENV) constitutes one of the most important arboviral pathogens affecting humans. The high prevalence of DENV infections, which cause more than 20,000 deaths annually, and the lack of effective vaccines or direct-acting antiviral drugs make it a global health concern. DENV genome replication occurs in close association with the host endomembrane system, which is remodeled to form the viral replication organelle that originates from endoplasmic reticulum (ER) membranes. To date, the viral and cellular determinants responsible for the biogenesis of DENV replication organelles are still poorly defined. The viral nonstructural protein 4A (NS4A) can remodel membranes and has been shown to associate with numerous host factors in DENV-replicating cells. In the present study, we used reverse and forward genetic screens and identified sites within NS4A required for DENV replication. We also mapped the determinants in NS4A required for interactions with other viral proteins. Moreover, taking advantage of our recently developed polyprotein expression system, we evaluated the role of NS4A in the formation of DENV replication organelles. Together, we report a detailed map of determinants within NS4A required for RNA replication, interaction with other viral proteins, and replication organelle formation. Our results suggest that NS4A might be an attractive target for antiviral therapy. IMPORTANCE DENV is the most prevalent mosquito-borne virus, causing around 390 million infections each year. There are no approved therapies to treat DENV infection, and the only available vaccine shows limited efficacy. The viral nonstructural proteins have emerged as attractive drug targets due to their pivotal role in RNA replication and establishment of virus-induced membranous compartments, designated replication organelles (ROs). The transmembrane protein NS4A, generated by cleavage of the NS4A-2K-4B precursor, contributes to DENV replication by unknown mechanisms. Here, we report a detailed genetic interaction map of NS4A and identify residues required for RNA replication and interaction between NS4A-2K-4B and NS2B-3 as well as NS1. Importantly, by means of an expression-based system, we demonstrate the essential role of NS4A in RO biogenesis and identify determinants in NS4A required for this process. Our data suggest that NS4A is an attractive target for antiviral therapy.


Assuntos
Vírus da Dengue/fisiologia , Dengue/virologia , Biogênese de Organelas , Organelas/virologia , Proteínas não Estruturais Virais/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Vírus da Dengue/ultraestrutura , Interações entre Hospedeiro e Microrganismos , Humanos , Proteínas Mutantes/fisiologia , Mutação , Organelas/ultraestrutura , Ligação Proteica , RNA/metabolismo , RNA Viral , Genética Reversa/métodos , Células Vero , Replicação Viral
7.
PLoS Pathog ; 15(5): e1007736, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071189

RESUMO

Dengue virus (DENV) has emerged as major human pathogen. Despite the serious socio-economic impact of DENV-associated diseases, antiviral therapy is missing. DENV replicates in the cytoplasm of infected cells and induces a membranous replication organelle, formed by invaginations of the endoplasmic reticulum membrane and designated vesicle packets (VPs). Nonstructural protein 1 (NS1) of DENV is a multifunctional protein. It is secreted from cells to counteract antiviral immune responses, but also critically contributes to the severe clinical manifestations of dengue. In addition, NS1 is indispensable for viral RNA replication, but the underlying molecular mechanism remains elusive. In this study, we employed a combination of genetic, biochemical and imaging approaches to dissect the determinants in NS1 contributing to its various functions in the viral replication cycle. Several important observations were made. First, we identified a cluster of amino acid residues in the exposed region of the ß-ladder domain of NS1 that are essential for NS1 secretion. Second, we revealed a novel interaction of NS1 with the NS4A-2K-4B cleavage intermediate, but not with mature NS4A or NS4B. This interaction is required for RNA replication, with two residues within the connector region of the NS1 "Wing" domain being crucial for binding of the NS4A-2K-4B precursor. By using a polyprotein expression system allowing the formation of VPs in the absence of viral RNA replication, we show that the NS1 -NS4A-2K-4B interaction is not required for VP formation, arguing that the association between these two proteins plays a more direct role in the RNA amplification process. Third, through analysis of polyproteins containing deletions in NS1, and employing a trans-complementation assay, we show that both cis and trans acting elements within NS1 contribute to VP formation, with the capability of NS1 mutants to form VPs correlating with their capability to support RNA replication. In conclusion, these results reveal a direct role of NS1 in VP formation that is independent from RNA replication, and argue for a critical function of a previously unrecognized NS4A-2K-NS4B precursor specifically interacting with NS1 and promoting viral RNA replication.


Assuntos
Carcinoma Hepatocelular/virologia , Dengue/virologia , Neoplasias Hepáticas/virologia , Biogênese de Organelas , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Dengue/metabolismo , Dengue/patologia , Vírus da Dengue/fisiologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Células Tumorais Cultivadas , Proteínas não Estruturais Virais/química
8.
PLoS Pathog ; 11(11): e1005277, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26562291

RESUMO

Non-structural protein 1 (NS1) is one of the most enigmatic proteins of the Dengue virus (DENV), playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E) and precursor Membrane (prM). Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the ß-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.


Assuntos
Vírus da Dengue/fisiologia , Proteínas não Estruturais Virais/metabolismo , Vírion/fisiologia , Linhagem Celular , Humanos , Imunoprecipitação/métodos , Mutagênese Sítio-Dirigida/métodos , RNA Viral/genética , Replicação Viral
9.
J Virol ; 89(14): 7170-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25926641

RESUMO

UNLABELLED: Dengue virus (DENV) infection causes the most prevalent arthropod-borne viral disease worldwide. Approved vaccines are not available, and targets suitable for the development of antiviral drugs are lacking. One possible drug target is nonstructural protein 4B (NS4B), because it is absolutely required for virus replication; however, its exact role in the DENV replication cycle is largely unknown. With the aim of mapping NS4B determinants critical for DENV replication, we performed a reverse genetic screening of 33 NS4B mutants in the context of an infectious DENV genome. While the majority of these mutations were lethal, for several of them, we were able to select for second-site pseudoreversions, most often residing in NS4B and restoring replication competence. To identify all viral NS4B interaction partners, we engineered a fully viable DENV genome encoding an affinity-tagged NS4B. Mass spectrometry-based analysis of the NS4B complex isolated from infected cells identified the NS3 protease/helicase as a major interaction partner of NS4B. By combining the genetic complementation map of NS4B with a replication-independent expression system, we identified the NS4B cytosolic loop-more precisely, amino acid residue Q134-as a critical determinant for NS4B-NS3 interaction. An alanine substitution at this site completely abrogated the interaction and DENV RNA replication, and both were restored by pseudoreversions A69S and A137V. This strict correlation between the degree of NS4B-NS3 interaction and DENV replication provides strong evidence that this viral protein complex plays a pivotal role during the DENV replication cycle, hence representing a promising target for novel antiviral strategies. IMPORTANCE: With no approved therapy or vaccine against dengue virus infection, the viral nonstructural protein 4B (NS4B) represents a possible drug target, because it is indispensable for virus replication. However, little is known about its precise structure and function. Here, we established the first comprehensive genetic interaction map of NS4B, identifying amino acid residues that are essential for virus replication, as well as second-site mutations compensating for their defects. Additionally, we determined the NS4B viral interactome in infected cells and identified the NS3 protease/helicase as a major interaction partner of NS4B. We mapped residues in the cytosolic loop of NS4B as critical determinants for interaction with NS3, as well as RNA replication. The strong correlation between NS3-NS4B interaction and RNA replication provides strong evidence that this complex plays a pivotal role in the viral replication cycle, hence representing a promising antiviral drug target.


Assuntos
Vírus da Dengue/fisiologia , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Substituição de Aminoácidos , Linhagem Celular , Análise Mutacional de DNA , Vírus da Dengue/genética , Teste de Complementação Genética , Hepatócitos/virologia , Humanos , Espectrometria de Massas , Viabilidade Microbiana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , RNA Helicases/metabolismo , Genética Reversa , Serina Endopeptidases/metabolismo , Supressão Genética , Proteínas não Estruturais Virais/genética
10.
J Virol ; 88(19): 11540-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056895

RESUMO

UNLABELLED: Dengue viruses (DV) represent a significant global health burden, with up to 400 million infections every year and around 500,000 infected individuals developing life-threatening disease. In spite of attempts to develop vaccine candidates and antiviral drugs, there is a lack of approved therapeutics for the treatment of DV infection. We have previously reported the identification of ST-148, a small-molecule inhibitor exhibiting broad and potent antiviral activity against DV in vitro and in vivo (C. M. Byrd et al., Antimicrob. Agents Chemother. 57:15-25, 2013, doi:10 .1128/AAC.01429-12). In the present study, we investigated the mode of action of this promising compound by using a combination of biochemical, virological, and imaging-based techniques. We confirmed that ST-148 targets the capsid protein and obtained evidence of bimodal antiviral activity affecting both assembly/release and entry of infectious DV particles. Importantly, by using a robust bioluminescence resonance energy transfer-based assay, we observed an ST-148-dependent increase of capsid self-interaction. These results were corroborated by molecular modeling studies that also revealed a plausible model for compound binding to capsid protein and inhibition by a distinct resistance mutation. These results suggest that ST-148-enhanced capsid protein self-interaction perturbs assembly and disassembly of DV nucleocapsids, probably by inducing structural rigidity. Thus, as previously reported for other enveloped viruses, stabilization of capsid protein structure is an attractive therapeutic concept that also is applicable to flaviviruses. IMPORTANCE: Dengue viruses are arthropod-borne viruses representing a significant global health burden. They infect up to 400 million people and are endemic to subtropical and tropical areas of the world. Currently, there are neither vaccines nor approved therapeutics for the prophylaxis or treatment of DV infections, respectively. This study reports the characterization of the mode of action of ST-148, a small-molecule capsid inhibitor with potent antiviral activity against all DV serotypes. Our results demonstrate that ST-148 stabilizes capsid protein self-interaction, thereby likely perturbing assembly and disassembly of viral nucleocapsids by inducing structural rigidity. This, in turn, might interfere with the release of viral RNA from incoming nucleocapsids (uncoating) as well as assembly of progeny virus particles. As previously reported for other enveloped viruses, we propose the capsid as a novel tractable target for flavivirus inhibitors.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Capsídeo/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Tiadiazóis/farmacologia , Montagem de Vírus/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antivirais/química , Capsídeo/química , Proteínas do Capsídeo/química , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetinae , Cristalografia por Raios X , Vírus da Dengue/química , Vírus da Dengue/fisiologia , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Alinhamento de Sequência , Tiadiazóis/química , Células Vero , Vírion/química , Vírion/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos
11.
Antimicrob Agents Chemother ; 57(1): 15-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23070172

RESUMO

Dengue viruses (DENV) infect 50 to 100 million people worldwide per year, of which 500,000 develop severe life-threatening disease. This mosquito-borne illness is endemic in most tropical and subtropical countries and has spread significantly over the last decade. While there are several promising vaccine candidates in clinical trials, there are currently no approved vaccines or therapeutics available for treatment of dengue infection. Here, we describe a novel small-molecule compound, ST-148, that is a potent inhibitor of all four serotypes of DENV in vitro. ST-148 significantly reduced viremia and viral load in vital organs and tended to lower cytokine levels in the plasma in a nonlethal model of DENV infection in AG129 mice. Compound resistance mapped to the DENV capsid (C) gene, and a direct interaction of ST-148 with C protein is suggested by alterations of the intrinsic fluorescence of the protein in the presence of compound. Thus, ST-148 appears to interact with the DENV C protein and inhibits a distinct step(s) of the viral replication cycle.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/genética , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Tiadiazóis/farmacologia , Viremia/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antivirais/síntese química , Proteínas do Capsídeo/química , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Modelos Animais de Doenças , Cães , Escherichia coli/genética , Compostos Heterocíclicos com 3 Anéis/síntese química , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tiadiazóis/síntese química , Carga Viral/efeitos dos fármacos , Ensaio de Placa Viral , Viremia/virologia , Replicação Viral/efeitos dos fármacos
12.
mBio ; 14(5): e0144123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37702492

RESUMO

IMPORTANCE: Dengue virus (DENV) is a major human pathogen that can cause hemorrhagic fever and shock syndrome. One important factor of DENV pathogenicity is non-structural protein 1 (NS1), a glycoprotein that is secreted from infected cells. Here we study the mode of action of the widely used drug ivermectin, used to treat parasitic infections and recently shown to lower NS1 blood levels in DENV-infected patients. We found that ivermectin blocks the nuclear transport of transcription factors required for the expression of chaperones that support the folding and secretion of glycoproteins, including NS1. Impairing nuclear transport of these transcription factors by ivermectin or depleting them from infected cells dampens NS1 folding and thus its secretion. These results reveal a novel mode of action of ivermectin that might apply to other flaviviruses as well.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Chaperona BiP do Retículo Endoplasmático , Ivermectina/farmacologia , Ivermectina/metabolismo , Carioferinas , Chaperonas Moleculares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
13.
Nat Metab ; 4(3): 310-319, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35347318

RESUMO

Extrapulmonary manifestations of COVID-19 have gained attention due to their links to clinical outcomes and their potential long-term sequelae1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) displays tropism towards several organs, including the heart and kidney. Whether it also directly affects the liver has been debated2,3. Here we provide clinical, histopathological, molecular and bioinformatic evidence for the hepatic tropism of SARS-CoV-2. We find that liver injury, indicated by a high frequency of abnormal liver function tests, is a common clinical feature of COVID-19 in two independent cohorts of patients with COVID-19 requiring hospitalization. Using autopsy samples obtained from a third patient cohort, we provide multiple levels of evidence for SARS-CoV-2 liver tropism, including viral RNA detection in 69% of autopsy liver specimens, and successful isolation of infectious SARS-CoV-2 from liver tissue postmortem. Furthermore, we identify transcription-, proteomic- and transcription factor-based activity profiles in hepatic autopsy samples, revealing similarities to the signatures associated with multiple other viral infections of the human liver. Together, we provide a comprehensive multimodal analysis of SARS-CoV-2 liver tropism, which increases our understanding of the molecular consequences of severe COVID-19 and could be useful for the identification of organ-specific pharmacological targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fígado , Proteômica , Tropismo
14.
Viruses ; 13(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924391

RESUMO

RNA viruses cause a wide range of human diseases that are associated with high mortality and morbidity. In the past decades, the rise of genetic-based screening methods and high-throughput sequencing approaches allowed the uncovering of unique and elusive aspects of RNA virus replication and pathogenesis at an unprecedented scale. However, viruses often hijack critical host functions or trigger pathological dysfunctions, perturbing cellular proteostasis, macromolecular complex organization or stoichiometry, and post-translational modifications. Such effects require the monitoring of proteins and proteoforms both on a global scale and at the structural level. Mass spectrometry (MS) has recently emerged as an important component of the RNA virus biology toolbox, with its potential to shed light on critical aspects of virus-host perturbations and streamline the identification of antiviral targets. Moreover, multiple novel MS tools are available to study the structure of large protein complexes, providing detailed information on the exact stoichiometry of cellular and viral protein complexes and critical mechanistic insights into their functions. Here, we review top-down and bottom-up mass spectrometry-based approaches in RNA virus biology with a special focus on the most recent developments in characterizing host responses, and their translational implications to identify novel tractable antiviral targets.


Assuntos
Proteômica/métodos , Infecções por Vírus de RNA , Vírus de RNA , Espectrometria de Massas em Tandem/métodos , Interações entre Hospedeiro e Microrganismos , Humanos , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Replicação Viral
15.
Nat Commun ; 12(1): 6918, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824277

RESUMO

While viral replication processes are largely understood, comparably little is known on cellular mechanisms degrading viral RNA. Some viral RNAs bear a 5'-triphosphate (PPP-) group that impairs degradation by the canonical 5'-3' degradation pathway. Here we show that the Nudix hydrolase 2 (NUDT2) trims viral PPP-RNA into monophosphorylated (P)-RNA, which serves as a substrate for the 5'-3' exonuclease XRN1. NUDT2 removes 5'-phosphates from PPP-RNA in an RNA sequence- and overhang-independent manner and its ablation in cells increases growth of PPP-RNA viruses, suggesting an involvement in antiviral immunity. NUDT2 is highly homologous to bacterial RNA pyrophosphatase H (RppH), a protein involved in the metabolism of bacterial mRNA, which is 5'-tri- or diphosphorylated. Our results show a conserved function between bacterial RppH and mammalian NUDT2, indicating that the function may have adapted from a protein responsible for RNA turnover in bacteria into a protein involved in the immune defense in mammals.


Assuntos
Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Estabilidade de RNA , RNA Viral/metabolismo , Adaptação Fisiológica , Animais , Antivirais , Células da Medula Óssea , Sistemas CRISPR-Cas , Exonucleases , Exorribonucleases , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos , Polifosfatos , RNA Bacteriano , RNA Mensageiro , Replicação Viral
16.
Curr Opin Immunol ; 56: 37-43, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30342374

RESUMO

One of the best-studied cellular responses to toxic signals and pathogens is programmed cell death. Over the past years, it became apparent that the specific mechanisms of cell death have tremendous influence at both cellular and organismal level, highlighting the importance of sensors and pathways involved in this decision-making process. Central signalling molecules involved in a variety of cell death pathways are reactive oxygen species (ROS). However, the molecular mechanisms regulating differential responses and cellular fates to distinct ROS levels remain incompletely understood. Recently, we uncovered a caspase-independent cell-death pathway named 'oxeiptosis', which links the ROS sensing capacity of KEAP1 to a cell death pathway involving PGAM5 and AIFM1. Alike apoptosis, oxeiptosis is anti-inflammatory when activated by increased intracellular ROS levels and upon pathogens encounter. Here we discuss the potential impact of oxeiptosis in pathogens clearance and teratogenic cells.


Assuntos
Apoptose/imunologia , Morte Celular , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Imunidade Celular , Moléculas com Motivos Associados a Patógenos/imunologia , Transdução de Sinais
17.
Viruses ; 11(9)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546825

RESUMO

Flaviviruses are the most medically relevant group of arboviruses causing a wide range of diseases in humans and are associated with high mortality and morbidity, as such posing a major health concern. Viruses belonging to this family can be endemic (e.g., dengue virus), but can also cause fulminant outbreaks (e.g., West Nile virus, Japanese encephalitis virus and Zika virus). Intense research efforts in the past decades uncovered shared fundamental strategies used by flaviviruses to successfully replicate in their respective hosts. However, the distinct features contributing to the specific host and tissue tropism as well as the pathological outcomes unique to each individual flavivirus are still largely elusive. The profound footprint of individual viruses on their respective hosts can be investigated using novel technologies in the field of proteomics that have rapidly developed over the last decade. An unprecedented sensitivity and throughput of mass spectrometers, combined with the development of new sample preparation and bioinformatics analysis methods, have made the systematic investigation of virus-host interactions possible. Furthermore, the ability to assess dynamic alterations in protein abundances, protein turnover rates and post-translational modifications occurring in infected cells now offer the unique possibility to unravel complex viral perturbations induced in the infected host. In this review, we discuss the most recent contributions of mass spectrometry-based proteomic approaches in flavivirus biology with a special focus on Zika virus, and their basic and translational potential and implications in understanding and characterizing host responses to arboviral infections.


Assuntos
Citoplasma/virologia , Interações entre Hospedeiro e Microrganismos , Proteômica/métodos , Zika virus/genética , Zika virus/metabolismo , Animais , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Flavivirus/genética , Flavivirus/metabolismo , Humanos , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Tropismo Viral , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/metabolismo , Infecção por Zika virus/virologia
18.
Nat Microbiol ; 4(12): 2416-2429, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636417

RESUMO

Flaviviruses, including dengue virus and Zika virus, extensively remodel the cellular endomembrane network to generate replication organelles that promote viral genome replication and virus production. However, it remains unclear how these membranes and associated cellular proteins act during the virus cycle. Here, we show that atlastins (ATLs), a subset of ER resident proteins involved in neurodegenerative diseases, have dichotomous effects on flaviviruses-with ATL2 depletion leading to replication organelle defects, and ATL3 depletion to changes in virus production pathways. We characterized non-conserved functional domains in ATL paralogues and show that the ATL interactome is profoundly reprogrammed following dengue virus infection. Screen analysis confirmed non-redundant ATL functions and identified a specific role for ATL3, and its interactor ARF4, in vesicle trafficking and virion maturation. Our data identify ATLs as central hubs targeted by flaviviruses to establish their replication organelle and to achieve efficient virion maturation and secretion.


Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Flavivirus/metabolismo , Vírion/metabolismo , Replicação Viral/fisiologia , Células A549 , Fatores de Ribosilação do ADP , Animais , Chlorocebus aethiops , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Retículo Endoplasmático/ultraestrutura , Flavivirus/genética , GTP Fosfo-Hidrolases/genética , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Células Vero , Proteínas Virais , Montagem de Vírus , Zika virus/genética , Zika virus/metabolismo
19.
Cell Rep ; 27(9): 2579-2592.e6, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141684

RESUMO

Dengue virus (DENV) is a human arboviral pathogen accounting for 390 million infections every year. The available vaccine has limited efficacy, and DENV-specific drugs have not been generated. To better understand DENV-host cell interaction, we employed RNA interference-based screening of the human kinome and identified fibroblast growth factor receptor 4 (FGFR4) to control the DENV replication cycle. Pharmacological inhibition of FGFR exerts a reciprocal effect by reducing DENV RNA replication and promoting the production of infectious virus particles. Addressing the latter effect, we found that the FGFR signaling pathway modulates intracellular distribution of DENV particles in a PI3K-dependent manner. Upon FGFR inhibition, virions accumulate in the trans-Golgi network compartment, where they undergo enhanced maturation cleavage of the envelope protein precursor membrane (prM), rendering virus particles more infectious. This study reveals an unexpected reciprocal role of a cellular receptor tyrosine kinase regulating DENV RNA replication and the production of infectious virions.


Assuntos
Vírus da Dengue/fisiologia , Dengue/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírion/crescimento & desenvolvimento , Replicação Viral , Dengue/genética , Dengue/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/genética , RNA Interferente Pequeno/genética , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vírion/metabolismo
20.
Cell Host Microbe ; 20(3): 342-356, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27545046

RESUMO

With no antiviral drugs or widely available vaccines, Dengue virus (DENV) constitutes a public health concern. DENV replicates at ER-derived cytoplasmic structures that include substructures called convoluted membranes (CMs); however, the purpose of these membrane alterations remains unclear. We determine that DENV nonstructural protein (NS)4B, a promising drug target with unknown function, associates with mitochondrial proteins and alters mitochondria morphology to promote infection. During infection, NS4B induces elongation of mitochondria, which physically contact CMs. This restructuring compromises the integrity of mitochondria-associated membranes, sites of ER-mitochondria interface critical for innate immune signaling. The spatio-temporal parameters of CM biogenesis and mitochondria elongation are linked to loss of activation of the fission factor Dynamin-Related Protein-1. Mitochondria elongation promotes DENV replication and alleviates RIG-I-dependent activation of interferon responses. As Zika virus infection induces similar mitochondria elongation, this perturbation may protect DENV and related viruses from innate immunity and create a favorable replicative environment.


Assuntos
Vírus da Dengue/patogenicidade , GTP Fosfo-Hidrolases/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Dinaminas , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA