Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(10): 3860-3872, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35792867

RESUMO

Altering plant water use efficiency (WUE) is a promising approach for achieving sustainable crop production in changing climate scenarios. Here, we show that WUE can be tuned by alleles of a single gene discovered in elite maize (Zea mays) breeding material. Genetic dissection of a genomic region affecting WUE led to the identification of the gene ZmAbh4 as causative for the effect. CRISPR/Cas9-mediated ZmAbh4 inactivation increased WUE without growth reductions in well-watered conditions. ZmAbh4 encodes an enzyme that hydroxylates the phytohormone abscisic acid (ABA) and initiates its catabolism. Stomatal conductance is regulated by ABA and emerged as a major link between variation in WUE and discrimination against the heavy carbon isotope (Δ13C) during photosynthesis in the C4 crop maize. Changes in Δ13C persisted in kernel material, which offers an easy-to-screen proxy for WUE. Our results establish a direct physiological and genetic link between WUE and Δ13C through a single gene with potential applications in maize breeding.


Assuntos
Ácido Abscísico , Zea mays , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Alelos , Isótopos de Carbono , Fotossíntese/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Zea mays/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(18): e2121797119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486687

RESUMO

Discovery and enrichment of favorable alleles in landraces are key to making them accessible for crop improvement. Here, we present two fundamentally different concepts for genome-based selection in landrace-derived maize populations, one based on doubled-haploid (DH) lines derived directly from individual landrace plants and the other based on crossing landrace plants to a capture line. For both types of populations, we show theoretically how allele frequencies of the ancestral landrace and the capture line translate into expectations for molecular and genetic variances. We show that the DH approach has clear advantages over gamete capture with generally higher prediction accuracies and no risk of masking valuable variation of the landrace. Prediction accuracies as high as 0.58 for dry matter yield in the DH population indicate high potential of genome-based selection. Based on a comparison among traits, we show that the genetic makeup of the capture line has great influence on the success of genome-based selection and that confounding effects between the alleles of the landrace and the capture line are best controlled for traits for which the capture line does not outperform the ancestral population per se or in testcrosses. Our results will guide the optimization of genome-enabled prebreeding schemes.


Assuntos
Variação Genética , Zea mays , Produtos Agrícolas/genética , Genótipo , Zea mays/genética
3.
Theor Appl Genet ; 137(5): 104, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622324

RESUMO

KEY MESSAGE: Selection response in truncation selection across multiple sets of candidates hinges on their post-selection proportions, which can deviate grossly from their initial proportions. For BLUPs, using a uniform threshold for all candidates maximizes the selection response, irrespective of differences in population parameters. Plant breeding programs typically involve multiple families from either the same or different populations, varying in means, genetic variances and prediction accuracy of BLUPs or BLUEs for true genetic values (TGVs) of candidates. We extend the classical breeder's equation for truncation selection from single to multiple sets of genotypes, indicating that the expected overall selection response ( Δ G Tot ) for TGVs depends on the selection response within individual sets and their post-selection proportions. For BLUEs, we show that maximizing Δ G Tot requires thresholds optimally tailored for each set, contingent on their population parameters. For BLUPs, we prove that Δ G Tot is maximized by applying a uniform threshold across all candidates from all sets. We provide explicit formulas for the origin of the selected candidates from different sets and show that their proportions before and after selection can differ substantially, especially for sets with inferior properties and low proportion. We discuss implications of these results for (a) optimum allocation of resources to training and prediction sets and (b) the need to counteract narrowing the genetic variation under genomic selection. For genomic selection of hybrids based on BLUPs of GCA of their parent lines, selecting distinct proportions in the two parent populations can be advantageous, if these differ substantially in the variance and/or prediction accuracy of GCA. Our study sheds light on the complex interplay of selection thresholds and population parameters for the selection response in plant breeding programs, offering insights into the effective resource management and prudent application of genomic selection for improved crop development.


Assuntos
Melhoramento Vegetal , Seleção Genética , Humanos , Melhoramento Vegetal/métodos , Genótipo , Plantas/genética , Genômica/métodos , Modelos Genéticos , Fenótipo
4.
Theor Appl Genet ; 136(11): 236, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906322

RESUMO

KEY MESSAGE: Mating designs determine the realized additive genetic variance in a population sample. Deflated or inflated variances can lead to reduced or overly optimistic assessment of future selection gains. The additive genetic variance [Formula: see text] inherent to a breeding population is a major determinant of short- and long-term genetic gain. When estimated from experimental data, it is not only the additive variances at individual loci (QTL) but also covariances between QTL pairs that contribute to estimates of [Formula: see text]. Thus, estimates of [Formula: see text] depend on the genetic structure of the data source and vary between population samples. Here, we provide a theoretical framework for calculating the expectation and variance of [Formula: see text] from genotypic data of a given population sample. In addition, we simulated breeding populations derived from different numbers of parents (P = 2, 4, 8, 16) and crossed according to three different mating designs (disjoint, factorial and half-diallel crosses). We calculated the variance of [Formula: see text] and of the parameter b reflecting the covariance component in [Formula: see text] standardized by the genic variance. Our results show that mating designs resulting in large biparental families derived from few disjoint crosses carry a high risk of generating progenies exhibiting strong covariances between QTL pairs on different chromosomes. We discuss the consequences of the resulting deflated or inflated [Formula: see text] estimates for phenotypic and genome-based selection as well as for applying the usefulness criterion in selection. We show that already one round of recombination can effectively break negative and positive covariances between QTL pairs induced by the mating design. We suggest to obtain reliable estimates of [Formula: see text] and its components in a population sample by applying statistical methods differing in their treatment of QTL covariances.


Assuntos
Genética Populacional , Melhoramento Vegetal , Humanos , Genótipo , Modelos Genéticos
5.
Theor Appl Genet ; 136(8): 176, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532821

RESUMO

KEY MESSAGE: Training sets produced by maximizing the number of parent lines, each involved in one cross, had the highest prediction accuracy for H0 hybrids, but lowest for H1 and H2 hybrids. Genomic prediction holds great promise for hybrid breeding but optimum composition of the training set (TS) as determined by the number of parents (nTS) and crosses per parent (c) has received little attention. Our objective was to examine prediction accuracy ([Formula: see text]) of GCA for lines used as parents of the TS (I1 lines) or not (I0 lines), and H0, H1 and H2 hybrids, comprising crosses of type I0 × I0, I1 × I0 and I1 × I1, respectively, as function of nTS and c. In the theory, we developed estimates for [Formula: see text] of GBLUPs for hybrids: (i)[Formula: see text] based on the expected prediction accuracy, and (ii) [Formula: see text] based on [Formula: see text] of GBLUPs of GCA and SCA effects. In the simulation part, hybrid populations were generated using molecular data from two experimental maize data sets. Additive and dominance effects of QTL borrowed from literature were used to simulate six scenarios of traits differing in the proportion (τSCA = 1%, 6%, 22%) of SCA variance in σG2 and heritability (h2 = 0.4, 0.8). Values of [Formula: see text] and [Formula: see text] closely agreed with [Formula: see text] for hybrids. For given size NTS = nTS × c of TS, [Formula: see text] of H0 hybrids and GCA of I0 lines was highest for c = 1. Conversely, for GCA of I1 lines and H1 and H2 hybrids, c = 1 yielded lowest [Formula: see text] with concordant results across all scenarios for both data sets. In view of these opposite trends, the optimum choice of c for maximizing selection response across all types of hybrids depends on the size and resources of the breeding program.


Assuntos
Genômica , Melhoramento Vegetal , Fenótipo , Genoma de Planta , Simulação por Computador , Modelos Genéticos
6.
Theor Appl Genet ; 135(1): 243-256, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668978

RESUMO

KEY MESSAGE: Association mapping with immortalized lines of landraces offers several advantages including a high mapping resolution, as demonstrated here in maize by identifying the causal variants underlying QTL for oil content and the metabolite allantoin. Landraces are traditional varieties of crops that present a valuable yet largely untapped reservoir of genetic variation to meet future challenges of agriculture. Here, we performed association mapping in a panel comprising 358 immortalized maize lines from six European Flint landraces. Linkage disequilibrium decayed much faster in the landraces than in the elite lines included for comparison, permitting a high mapping resolution. We demonstrate this by fine-mapping a quantitative trait locus (QTL) for oil content down to the phenylalanine insertion F469 in DGAT1-2 as the causal variant. For the metabolite allantoin, related to abiotic stress response, we identified promoter polymorphisms and differential expression of an allantoinase as putative cause of variation. Our results demonstrate the power of this approach to dissect QTL potentially down to the causal variants, toward the utilization of natural or engineered alleles in breeding. Moreover, we provide guidelines for studies using ancestral landraces for crop genetic research and breeding.


Assuntos
Biblioteca Gênica , Genes de Plantas , Locos de Características Quantitativas , Zea mays/genética , Estudos de Associação Genética , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Especificidade da Espécie
7.
Theor Appl Genet ; 134(6): 1663-1675, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575820

RESUMO

KEY MESSAGE: Carbon isotope discrimination is a promising trait for indirect screening for improved water use efficiency of C4 crops. In the context of a changing climate, drought is one of the major factors limiting plant growth and yield. Hence, breeding efforts are directed toward improving water use efficiency (WUE) as a key factor in climate resilience and sustainability of crop production. As WUE is a complex trait and its evaluation is rather resource consuming, proxy traits, which are easier to screen and reliably reflect variation in WUE, are needed. In C3 crops, a trait established to be indicative for WUE is the carbon isotopic composition (δ13C) of plant material, which reflects the preferential assimilation of the lighter carbon isotope 12C over 13C during photosynthesis. In C4 crops, carbon fixation is more complex and δ13C thus depends on many more factors than in C3 crops. Recent physiological and genetic studies indicate a correlation between δ13C and WUE also in C4 crops, as well as a colocalization of quantitative trait loci for the two traits. Moreover, significant intraspecific variation as well as a medium to high heritability of δ13C has been shown in some of the main C4 crops, such as maize, sorghum and sugarcane, indicating its potential for indirect selection and breeding. Further research on physiological, genetic and environmental components influencing δ13C is needed to support its application in improving WUE and making C4 crops resilient to climate change.


Assuntos
Isótopos de Carbono/análise , Mudança Climática , Produtos Agrícolas/genética , Melhoramento Vegetal , Secas , Locos de Características Quantitativas , Saccharum/genética , Sorghum/genética , Zea mays/genética
8.
Theor Appl Genet ; 134(9): 2913-2930, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34115154

RESUMO

KEY MESSAGE: The accuracy of genomic prediction of phenotypes can be increased by including the top-ranked pairwise SNP interactions into the prediction model. We compared the predictive ability of various prediction models for a maize dataset derived from 910 doubled haploid lines from two European landraces (Kemater Landmais Gelb and Petkuser Ferdinand Rot), which were tested at six locations in Germany and Spain. The compared models were Genomic Best Linear Unbiased Prediction (GBLUP) as an additive model, Epistatic Random Regression BLUP (ERRBLUP) accounting for all pairwise SNP interactions, and selective Epistatic Random Regression BLUP (sERRBLUP) accounting for a selected subset of pairwise SNP interactions. These models have been compared in both univariate and bivariate statistical settings for predictions within and across environments. Our results indicate that modeling all pairwise SNP interactions into the univariate/bivariate model (ERRBLUP) is not superior in predictive ability to the respective additive model (GBLUP). However, incorporating only a selected subset of interactions with the highest effect variances in univariate/bivariate sERRBLUP can increase predictive ability significantly compared to the univariate/bivariate GBLUP. Overall, bivariate models consistently outperform univariate models in predictive ability. Across all studied traits, locations and landraces, the increase in prediction accuracy from univariate GBLUP to univariate sERRBLUP ranged from 5.9 to 112.4 percent, with an average increase of 47 percent. For bivariate models, the change ranged from -0.3 to + 27.9 percent comparing the bivariate sERRBLUP to the bivariate GBLUP, with an average increase of 11 percent. This considerable increase in predictive ability achieved by sERRBLUP may be of interest for "sparse testing" approaches in which only a subset of the lines/hybrids of interest is observed at each location.


Assuntos
Cromossomos de Plantas/genética , Meio Ambiente , Epistasia Genética , Modelos Genéticos , Fenótipo , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico/métodos , Polimorfismo de Nucleotídeo Único
9.
Theor Appl Genet ; 134(9): 3069-3081, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34117908

RESUMO

KEY MESSAGE: Model training on data from all selection cycles yielded the highest prediction accuracy by attenuating specific effects of individual cycles. Expected reliability was a robust predictor of accuracies obtained with different calibration sets. The transition from phenotypic to genome-based selection requires a profound understanding of factors that determine genomic prediction accuracy. We analysed experimental data from a commercial maize breeding programme to investigate if genomic measures can assist in identifying optimal calibration sets for model training. The data set consisted of six contiguous selection cycles comprising testcrosses of 5968 doubled haploid lines genotyped with a minimum of 12,000 SNP markers. We evaluated genomic prediction accuracies in two independent prediction sets in combination with calibration sets differing in sample size and genomic measures (effective sample size, average maximum kinship, expected reliability, number of common polymorphic SNPs and linkage phase similarity). Our results indicate that across selection cycles prediction accuracies were as high as 0.57 for grain dry matter yield and 0.76 for grain dry matter content. Including data from all selection cycles in model training yielded the best results because interactions between calibration and prediction sets as well as the effects of different testers and specific years were attenuated. Among genomic measures, the expected reliability of genomic breeding values was the best predictor of empirical accuracies obtained with different calibration sets. For grain yield, a large difference between expected and empirical reliability was observed in one prediction set. We propose to use this difference as guidance for determining the weight phenotypic data of a given selection cycle should receive in model retraining and for selection when both genomic breeding values and phenotypes are available.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas
10.
Theor Appl Genet ; 134(3): 793-805, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33274402

RESUMO

KEY MESSAGE: High genetic variation in two European maize landraces can be harnessed to improve Gibberella ear rot resistance by integrated genomic tools. Fusarium graminearum (Fg) causes Gibberella ear rot (GER) in maize leading to yield reduction and contamination of grains with several mycotoxins. This study aimed to elucidate the molecular basis of GER resistance among 500 doubled haploid lines derived from two European maize landraces, "Kemater Landmais Gelb" (KE) and "Petkuser Ferdinand Rot" (PE). The two landraces were analyzed individually using genome-wide association studies and genomic selection (GS). The lines were genotyped with a 600-k maize array and phenotyped for GER severity, days to silking, plant height, and seed-set in four environments using artificial infection with a highly aggressive Fg isolate. High genotypic variances and broad-sense heritabilities were found for all traits. Genotype-environment interaction was important throughout. The phenotypic (r) and genotypic ([Formula: see text]) correlations between GER severity and three agronomic traits were low (r = - 0.27 to 0.20; [Formula: see text]= - 0.32 to 0.22). For GER severity, eight QTLs were detected in KE jointly explaining 34% of the genetic variance. In PE, no significant QTLs for GER severity were detected. No common QTLs were found between GER severity and the three agronomic traits. The mean prediction accuracies ([Formula: see text]) of weighted GS (wRR-BLUP) were higher than [Formula: see text] of marker-assisted selection (MAS) and unweighted GS (RR-BLUP) for GER severity. Using KE as the training set and PE as the validation set resulted in very low [Formula: see text] that could be improved by using fixed marker effects in the GS model.


Assuntos
Cromossomos de Plantas/genética , Resistência à Doença/genética , Variação Genética , Gibberella/fisiologia , Doenças das Plantas/genética , Zea mays/genética , Mapeamento Cromossômico , Resistência à Doença/imunologia , Marcadores Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Zea mays/imunologia , Zea mays/microbiologia
11.
Heredity (Edinb) ; 126(6): 929-941, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33888874

RESUMO

Domesticates are an excellent model for understanding biological consequences of rapid climate change. Maize (Zea mays ssp. mays) was domesticated from a tropical grass yet is widespread across temperate regions today. We investigate the biological basis of temperate adaptation in diverse structured nested association mapping (NAM) populations from China, Europe (Dent and Flint) and the United States as well as in the Ames inbred diversity panel, using days to flowering as a proxy. Using cross-population prediction, where high prediction accuracy derives from overall genomic relatedness, shared genetic architecture, and sufficient diversity in the training population, we identify patterns in predictive ability across the five populations. To identify the source of temperate adapted alleles in these populations, we predict top associated genome-wide association study (GWAS) identified loci in a Random Forest Classifier using independent temperate-tropical North American populations based on lines selected from Hapmap3 as predictors. We find that North American populations are well predicted (AUC equals 0.89 and 0.85 for Ames and USNAM, respectively), European populations somewhat well predicted (AUC equals 0.59 and 0.67 for the Dent and Flint panels, respectively) and that the Chinese population is not predicted well at all (AUC is 0.47), suggesting an independent adaptation process for early flowering in China. Multiple adaptations for the complex trait days to flowering in maize provide hope for similar natural systems under climate change.


Assuntos
Adaptação Fisiológica , Flores/fisiologia , Zea mays , Adaptação Fisiológica/genética , Alelos , Estudos de Associação Genética , Zea mays/genética , Zea mays/fisiologia
12.
BMC Genomics ; 21(1): 300, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293268

RESUMO

BACKGROUND: Low temperatures decrease the capacity for biomass production and lead to growth retardation up to irreversible cellular damage in modern maize cultivars. European flint landraces are an untapped genetic resource for genes and alleles conferring cold tolerance which they acquired during their adaptation to the agroecological conditions in Europe. RESULTS: Based on a phenotyping experiment of 276 doubled haploid lines derived from the European flint landrace "Petkuser Ferdinand Rot" diverging for cold tolerance, we selected 21 of these lines for an RNA-seq experiment. The different genotypes showed highly variable transcriptomic responses to cold. We identified 148, 3254 and 563 genes differentially expressed with respect to cold treatment, cold tolerance and growth rate at cold, respectively. Gene ontology (GO) term enrichment demonstrated that the detoxification of reactive oxygen species is associated with cold tolerance, whereas amino acids might play a crucial role as antioxidant precursors and signaling molecules. CONCLUSION: Doubled haploids representing a European maize flint landrace display genotype-specific transcriptome patterns associated with cold response, cold tolerance and seedling growth rate at cold. Identification of cold regulated genes in European flint germplasm, could be a starting point for introgressing such alleles in modern breeding material for maize improvement.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Plântula/genética , Transcriptoma/genética , Zea mays/genética , Temperatura Baixa , Biologia Computacional , Ontologia Genética , Variação Genética , Genótipo , Haploidia , Fenótipo , Melhoramento Vegetal , Raízes de Plantas , RNA-Seq , Plântula/crescimento & desenvolvimento , Estresse Fisiológico
13.
Theor Popul Biol ; 132: 47-59, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31830483

RESUMO

Modeling covariance structure based on genetic similarity between pairs of relatives plays an important role in evolutionary, quantitative and statistical genetics. Historically, genetic similarity between individuals has been quantified from pedigrees via the probability that randomly chosen homologous alleles between individuals are identical by descent (IBD). At present, however, many genetic analyses rely on molecular markers, with realized measures of genomic similarity replacing IBD-based expected similarities. Animal and plant breeders, for example, now employ marker-based genomic relationship matrices between individuals in prediction models and in estimation of genome-based heritability coefficients. Phenotypes convey information about genetic similarity as well. For instance, if phenotypic values are at least partially the result of the action of quantitative trait loci, one would expect the former to inform about the latter, as in genome-wide association studies. Statistically, a non-trivial conditional distribution of unknown genetic similarities, given phenotypes, is to be expected. A Bayesian formalism is presented here that applies to whole-genome regression methods where some genetic similarity matrix, e.g., a genomic relationship matrix, can be defined. Our Bayesian approach, based on phenotypes and markers, converts prior (markers only) expected similarity into trait-specific posterior similarity. A simulation illustrates situations under which effective Bayesian learning from phenotypes occurs. Pinus and wheat data sets were used to demonstrate applicability of the concept in practice. The methodology applies to a wide class of Bayesian linear regression models, it extends to the multiple-trait domain, and can also be used to develop phenotype-guided similarity kernels in prediction problems.


Assuntos
Estudo de Associação Genômica Ampla , Modelos Genéticos , Locos de Características Quantitativas , Teorema de Bayes , Genótipo , Fenótipo , Pinus/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética
14.
Theor Appl Genet ; 132(6): 1897-1908, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30877313

RESUMO

KEY MESSAGE: Selected doubled haploid lines averaged similar testcross performance as their original landraces, and the best of them approached the yields of elite inbreds, demonstrating their potential to broaden the narrow genetic diversity of the flint germplasm pool. Maize landraces represent a rich source of genetic diversity that remains largely idle because the high genetic load and performance gap to elite germplasm hamper their use in modern breeding programs. Production of doubled haploid (DH) lines can mitigate problems associated with the use of landraces in pre-breeding. Our objective was to assess in comparison with modern materials the testcross performance (TP) of the best 89 out of 389 DH lines developed from six landraces and evaluated in previous studies for line per se performance (LP). TP with a dent tester was evaluated for the six original landraces, ~ 15 DH lines from each landrace selected for LP, and six elite flint inbreds together with nine commercial hybrids for grain and silage traits. Mean TP of the DH lines rarely differed significantly from TP of their corresponding landrace, which averaged in comparison with the mean TP of the elite flint inbreds ~ 20% lower grain yield and ~ 10% lower dry matter and methane yield. Trait correlations of DH lines closely agreed with the literature; correlation of TP with LP was zero for grain yield, underpinning the need to evaluate TP in addition to LP. For all traits, we observed substantial variation for TP among the DH lines and the best showed similar TP yields as the elite inbreds. Our results demonstrate the high potential of landraces for broadening the narrow genetic base of the flint heterotic pool and the usefulness of the DH technology for exploiting idle genetic resources from gene banks.


Assuntos
Variação Genética , Haploidia , Melhoramento Vegetal , Sementes/genética , Seleção Genética , Zea mays/genética , Cruzamentos Genéticos , Europa (Continente) , Genótipo , Fenótipo
15.
Theor Appl Genet ; 132(12): 3333-3345, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31559526

RESUMO

KEY MESSAGE: Doubled-haploid libraries from landraces capture native genetic diversity for a multitude of quantitative traits and make it accessible for breeding and genome-based studies. Maize landraces comprise large allelic diversity. We created doubled-haploid (DH) libraries from three European flint maize landraces and characterized them with respect to their molecular diversity, population structure, trait means, variances, and trait correlations. In total, 899 DH lines were evaluated using high-quality genotypic and multi-environment phenotypic data from up to 11 environments. The DH lines covered 95% of the molecular variation present in 35 landraces of an earlier study and represent the original three landrace populations in an unbiased manner. A comprehensive analysis of the target trait plant development at early growth stages as well as other important agronomic traits revealed large genetic variation for line per se and testcross performance. The majority of the 378 DH lines evaluated as testcrosses outperformed the commercial hybrids for early development. For total biomass yield, we observed a yield gap of 15% between mean testcross yield of the commercial hybrids and mean testcross yield of the DH lines. The DH lines also exhibited genetic variation for undesirable traits like root lodging and tillering, but correlations with target traits early development and yield were low or nonsignificant. The presented diversity atlas is a valuable, publicly available resource for genome-based studies to identify novel trait variation and evaluate the prospects of genomic prediction in landrace-derived material.


Assuntos
Variação Genética , Genética Populacional , Melhoramento Vegetal , Zea mays/genética , Cruzamentos Genéticos , Europa (Continente) , Genótipo , Haploidia , Fenótipo
16.
Theor Appl Genet ; 132(1): 53-63, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30244394

RESUMO

KEY MESSAGE: A genomic segment on maize chromosome 7 influences carbon isotope composition, water use efficiency, and leaf growth sensitivity to drought, possibly by affecting stomatal properties. Climate change is expected to decrease water availability in many agricultural production areas around the globe. Therefore, plants with improved ability to grow under water deficit are urgently needed. We combined genetic, phenomic, and physiological approaches to understand the relationship between growth, stomatal conductance, water use efficiency, and carbon isotope composition in maize (Zea mays L.). Using near-isogenic lines derived from a maize introgression library, we analysed the effects of a genomic region previously identified as affecting carbon isotope composition. We show stability of trait expression over several years of field trials and demonstrate in the phenotyping platform Phenodyn that the same genomic region also influences the sensitivity of leaf growth to evaporative demand and soil water potential. Our results suggest that the studied genomic region affecting carbon isotope discrimination also harbours quantitative trait loci playing a role in maize drought sensitivity possibly via stomatal behaviour and development. We propose that the observed phenotypes collectively originate from altered stomatal conductance, presumably via abscisic acid.


Assuntos
Isótopos de Carbono/análise , Secas , Água/fisiologia , Zea mays/genética , Zea mays/fisiologia , Cromossomos de Plantas/genética , Fenótipo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Locos de Características Quantitativas , Estresse Fisiológico
17.
Plant J ; 89(5): 853-869, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888547

RESUMO

We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.


Assuntos
Cromossomos de Plantas/genética , Secale/genética , DNA de Plantas/genética , Genoma de Planta/genética , Genômica , Genótipo , Sintenia
18.
Anal Biochem ; 553: 24-27, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29777680

RESUMO

The plant hormone abscisic acid (ABA) regulates many processes, including response to drought, seed dormancy and abscission of leaves and fruits. For maintenance of ABA homeostasis, catabolism of ABA by 8'-hydroxylation and subsequent cyclisation to phaseic acid (PA) is crucial. However, detection of ABA 8'-hydroxylation activity is tedious. We present a simple and rapid method for detection of ABA 8'-hydroxylase activity by cloning cDNAs of interest and expressing the respective protein in yeast. Upon addition of ABA, PA is formed and subsequently quantified in the yeast cell culture supernatant by heart cutting 2D-HPLC or GC-MS.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Saccharomyces cerevisiae/enzimologia , Ciclização
19.
Theor Appl Genet ; 130(11): 2283-2295, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28780586

RESUMO

KEY MESSAGE: Capitalizing upon the genomic characteristics of long-term random mating populations, sampling from pre-selected landraces is a promising approach for broadening the genetic base of elite germplasm for quantitative traits. Genome-enabled strategies for harnessing untapped allelic variation of landraces are currently evolving. The success of such approaches depends on the choice of source material. Thus, the analysis of different strategies for sampling allelic variation from landraces and their impact on population diversity and linkage disequilibrium (LD) is required to ensure the efficient utilization of diversity. We investigated the impact of different sampling strategies on diversity parameters and LD based on high-density genotypic data of 35 European maize landraces each represented by more than 20 individuals. On average, five landraces already captured ~95% of the molecular diversity of the entire dataset. Within landraces, absence of pronounced population structure, consistency of linkage phases and moderate to low LD levels were found. When combining data of up to 10 landraces, LD decay distances decreased to a few kilobases. Genotyping 24 individuals per landrace with 5k SNPs was sufficient for obtaining representative estimates of diversity and LD levels to allow an informed pre-selection of landraces. Integrating results from European with Central and South American landraces revealed that European landraces represent a unique and diverse spectrum of allelic variation. Sampling strategies for harnessing allelic variation from landraces depend on the study objectives. If the focus lies on the improvement of elite germplasm for quantitative traits, we recommend sampling from pre-selected landraces, as it yields a wide range of diversity, allows optimal marker imputation, control for population structure and avoids the confounding effects of strong adaptive alleles.


Assuntos
Variação Genética , Genética Populacional , Desequilíbrio de Ligação , Melhoramento Vegetal , Zea mays/genética , Alelos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
20.
Theor Appl Genet ; 130(10): 2151-2164, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28730463

RESUMO

KEY MESSAGE: Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs. Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr-2) in Triticeae. The Puma allele at the Fr-R2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the Fr-R2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.


Assuntos
Congelamento , Locos de Características Quantitativas , Secale/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Ligação Genética , Genótipo , Fenótipo , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA