Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(33): e2114734119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947615

RESUMO

The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD.


Assuntos
Insuficiência Renal Crônica , Uromodulina , Heterozigoto , Humanos , Mutação , Insuficiência Renal Crônica/genética , Uromodulina/genética
2.
Annu Rev Physiol ; 83: 477-501, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33566673

RESUMO

Uromodulin, a protein exclusively produced by the kidney, is the most abundant urinary protein in physiological conditions. Already described several decades ago, uromodulin has gained the spotlight in recent years, since the discovery that mutations in its encoding gene UMOD cause a renal Mendelian disease (autosomal dominant tubulointerstitial kidney disease) and that common polymorphisms are associated with multifactorial disorders, such as chronic kidney disease, hypertension, and cardiovascular diseases. Moreover, variations in uromodulin levels in urine and/or blood reflect kidney functioning mass and are of prognostic value for renal function, cardiovascular events, and overall mortality. The clinical relevance of uromodulin reflects its multifunctional nature, playing a role in renal ion transport and immunomodulation, in protection against urinary tract infections and renal stones, and possibly as a systemic antioxidant. Here, we discuss the multifaceted roles of this protein in kidney physiology and its translational relevance.


Assuntos
Rim/metabolismo , Uromodulina/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Rim/patologia , Cálculos Renais/metabolismo , Cálculos Renais/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Infecções Urinárias/metabolismo , Infecções Urinárias/patologia
3.
EMBO J ; 39(24): e106807, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33196145

RESUMO

Assembly of extracellular filaments and matrices mediating fundamental biological processes such as morphogenesis, hearing, fertilization, and antibacterial defense is driven by a ubiquitous polymerization module known as zona pellucida (ZP) "domain". Despite the conservation of this element from hydra to humans, no detailed information is available on the filamentous conformation of any ZP module protein. Here, we report a cryo-electron microscopy study of uromodulin (UMOD)/Tamm-Horsfall protein, the most abundant protein in human urine and an archetypal ZP module-containing molecule, in its mature homopolymeric state. UMOD forms a one-start helix with an unprecedented 180-degree twist between subunits enfolded by interdomain linkers that have completely reorganized as a result of propeptide dissociation. Lateral interaction between filaments in the urine generates sheets exposing a checkerboard of binding sites to capture uropathogenic bacteria, and UMOD-based models of heteromeric vertebrate egg coat filaments identify a common sperm-binding region at the interface between subunits.


Assuntos
Polímeros/química , Uromodulina/química , Zona Pelúcida/química , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica/métodos , Feminino , Humanos , Polimerização , Polímeros/metabolismo , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Uromodulina/genética , Uromodulina/metabolismo , Zona Pelúcida/metabolismo
4.
Kidney Int ; 98(6): 1397-1400, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33276865

RESUMO

Heterozygous mutations in REN cause autosomal dominant tubulointerstitial kidney disease (ADTKD), an increasingly recognized entity characterized by interstitial fibrosis and tubular damage. In contrast to more common forms of ADTKD, the rarity of ADTKD-REN has precluded a thorough disease characterization. Zivná and colleagues take advantage of an international patient cohort to expand the genetic and clinical spectra of ADTKD-REN and to establish genotype-phenotype correlations with important implications for patient care.


Assuntos
Doenças Renais Policísticas , Estudos de Coortes , Heterozigoto , Humanos , Mutação
5.
Kidney Int ; 98(3): 717-731, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32450155

RESUMO

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an increasingly recognized cause of end-stage kidney disease, primarily due to mutations in UMOD and MUC1. The lack of clinical recognition and the small size of cohorts have slowed the understanding of disease ontology and development of diagnostic algorithms. We analyzed two registries from Europe and the United States to define genetic and clinical characteristics of ADTKD-UMOD and ADTKD-MUC1 and develop a practical score to guide genetic testing. Our study encompassed 726 patients from 585 families with a presumptive diagnosis of ADTKD along with clinical, biochemical, genetic and radiologic data. Collectively, 106 different UMOD mutations were detected in 216/562 (38.4%) of families with ADTKD (303 patients), and 4 different MUC1 mutations in 72/205 (35.1%) of the families that are UMOD-negative (83 patients). The median kidney survival was significantly shorter in patients with ADTKD-MUC1 compared to ADTKD-UMOD (46 vs. 54 years, respectively), whereas the median gout-free survival was dramatically reduced in patients with ADTKD-UMOD compared to ADTKD-MUC1 (30 vs. 67 years, respectively). In contrast to patients with ADTKD-UMOD, patients with ADTKD-MUC1 had normal urinary excretion of uromodulin and distribution of uromodulin in tubular cells. A diagnostic algorithm based on a simple score coupled with urinary uromodulin measurements separated patients with ADTKD-UMOD from those with ADTKD-MUC1 with a sensitivity of 94.1%, a specificity of 74.3% and a positive predictive value of 84.2% for a UMOD mutation. Thus, ADTKD-UMOD is more frequently diagnosed than ADTKD-MUC1, ADTKD subtypes present with distinct clinical features, and a simple score coupled with urine uromodulin measurements may help prioritizing genetic testing.


Assuntos
Rim Policístico Autossômico Dominante , Europa (Continente) , Testes Genéticos , Humanos , Pessoa de Meia-Idade , Mucina-1/genética , Mutação , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Uromodulina/genética
6.
Nephrol Dial Transplant ; 29 Suppl 4: iv33-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25165184

RESUMO

The nephron, the basic structural and functional unit of the kidney, is lined by different, highly differentiated polarized epithelial cells. Their concerted action modifies the composition of the glomerular ultrafiltrate through reabsorption and secretion of essential solutes to finally produce urine. The highly specialized properties of the different epithelial cell types of the nephron are remarkable and rely on the regulated delivery of specific proteins to their final subcellular localization. Hence, mutations affecting sorting of individual proteins or inactivating the epithelial trafficking machinery have severe functional consequences causing disease. The presence of mutations leading to protein trafficking defect is indeed a mechanism of pathogenesis seen in an increasing number of disorders, including about one-third of monogenic diseases affecting the kidney. In this review, we focus on representative diseases to discuss different molecular mechanisms that primarily lead to defective protein transport, such as endoplasmic reticulum retention, mistargeting, defective endocytosis or degradation, eventually resulting in epithelial cell and kidney dysfunction. For each disease, we discuss the type of reported mutations, their molecular and cellular consequences and possible strategies for therapeutic intervention. Particular emphasis is given to new and prospective therapies aimed at rescuing the trafficking defect at the basis of these conformational diseases.


Assuntos
Predisposição Genética para Doença , Nefropatias/metabolismo , Proteínas/metabolismo , Animais , Humanos , Nefropatias/genética , Nefropatias/patologia , Transporte Proteico
7.
Dis Model Mech ; 16(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283036

RESUMO

Autosomal dominant tubulointerstitial kidney disease (ADTKD), a rare genetic disorder characterised by progressive chronic kidney disease, is caused by mutations in different genes, including REN, encoding renin. Renin is a secreted protease composed of three domains: the leader peptide that allows insertion in the endoplasmic reticulum (ER), a pro-segment regulating its activity, and the mature part of the protein. Mutations in mature renin lead to ER retention of the mutant protein and to late-onset disease, whereas mutations in the leader peptide, associated with defective ER translocation, and mutations in the pro-segment, leading to accumulation in the ER-to-Golgi compartment, lead to a more severe, early-onset disease. In this study, we demonstrate a common, unprecedented effect of mutations in the leader peptide and pro-segment as they lead to full or partial mistargeting of the mutated proteins to mitochondria. The mutated pre-pro-sequence of renin is necessary and sufficient to drive mitochondrial rerouting, mitochondrial import defect and fragmentation. Mitochondrial localisation and fragmentation were also observed for wild-type renin when ER translocation was affected. These results expand the spectrum of cellular phenotypes associated with ADTKD-associated REN mutations, providing new insight into the molecular pathogenesis of the disease.


Assuntos
Nefropatias , Renina , Humanos , Renina/genética , Sinais Direcionadores de Proteínas/genética , Mutação/genética , Nefropatias/genética , Mitocôndrias/genética
8.
EMBO Mol Med ; 15(12): e18242, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37885358

RESUMO

Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated UmodC171Y and UmodR186S knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage. Deletion of the wild-type Umod allele in heterozygous UmodR186S mice increased the formation of uromodulin aggregates and ER stress. Studies in kidney tubular cells confirmed differences in uromodulin aggregates, with activation of mutation-specific quality control and clearance mechanisms. Enhancement of autophagy by starvation and mTORC1 inhibition decreased uromodulin aggregates. These studies substantiate the role of toxic aggregates as driving progression of ADTKD-UMOD, relevant for therapeutic strategies to improve clearance of mutant uromodulin.


Assuntos
Nefropatias , Rim , Animais , Camundongos , Alelos , Progressão da Doença , Rim/metabolismo , Nefropatias/genética , Mutação , Uromodulina/genética , Uromodulina/metabolismo
9.
Kidney Int ; 81(8): 769-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22237754

RESUMO

Uromodulin is exclusively expressed in the thick ascending limb and is the most abundant protein secreted in urine where it is found in high-molecular-weight polymers. Its biological functions are still elusive, but it is thought to play a protective role against urinary tract infection, calcium oxalate crystal formation, and regulation of water and salt balance in the thick ascending limb. Mutations in uromodulin are responsible for autosomal-dominant kidney diseases characterized by defective urine concentrating ability, hyperuricemia, gout, tubulointerstitial fibrosis, renal cysts, and chronic kidney disease. Previous in vitro studies found retention in the endoplasmic reticulum as a common feature of all uromodulin mutant isoforms. Both in vitro and in vivo we found that mutant isoforms partially escaped retention in the endoplasmic reticulum and reached the plasma membrane where they formed large extracellular aggregates that have a dominant-negative effect on coexpressed wild-type protein. Notably, mutant uromodulin excretion was detected in patients carrying uromodulin mutations. Thus, our results suggest that mutant uromodulin exerts a gain-of-function effect that can be exerted by both intra- and extracellular forms of the protein.


Assuntos
Proteínas Mutantes/química , Proteínas Mutantes/urina , Uromodulina/química , Uromodulina/urina , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Cães , Retículo Endoplasmático/metabolismo , Espaço Extracelular/metabolismo , Feminino , Humanos , Rim/metabolismo , Nefropatias/genética , Nefropatias/urina , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Mutantes/genética , Linhagem , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/urina , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uromodulina/genética
10.
Hum Mol Genet ; 19(15): 2998-3010, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20472742

RESUMO

Uromodulin-associated kidney diseases (UAKD) are autosomal-dominant disorders characterized by alteration of urinary concentrating ability, tubulo-interstitial fibrosis, hyperuricaemia and renal cysts at the cortico-medullary junction. UAKD are caused by mutations in UMOD, the gene encoding uromodulin. Although uromodulin is the most abundant protein secreted in urine, its physiological role remains elusive. Several in vitro studies demonstrated that mutations in uromodulin lead to endoplasmic reticulum (ER) retention of mutant protein, but their relevance in vivo has not been studied. We here report on the generation and characterization of the first transgenic mouse model for UAKD. Transgenic mice that express the C147W mutant uromodulin (Tg(Umod)(C147W)), corresponding to the well-established patient mutation C148W, were compared with expression-matched transgenic mice expressing the wild-type protein (Tg(Umod)(wt)). Tg(Umod)(C147W) mice recapitulate most of the UAKD features, with urinary concentrating defect of renal origin and progressive renal injury, i.e. tubulo-interstitial fibrosis with inflammatory cell infiltration, tubule dilation and specific damage of the thick ascending limb of Henle's loop, leading to mild renal failure. As observed in patients, Tg(Umod)(C147W) mice show a marked reduction of urinary uromodulin excretion. Mutant uromodulin trafficking to the plasma membrane is indeed impaired as it is retained in the ER of expressing cells leading to ER hyperplasia. The Tg(Umod)(C147W) mice represent a unique model that recapitulates most of the features associated with UAKD. Our data clearly demonstrate a gain-of-toxic function of uromodulin mutations providing insights into the pathogenetic mechanism of the disease. These findings may also be relevant for other tubulo-interstitial or ER-storage disorders.


Assuntos
Túbulos Renais/patologia , Mucoproteínas/metabolismo , Insuficiência Renal/complicações , Insuficiência Renal/urina , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Progressão da Doença , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Inflamação/patologia , Espaço Intracelular/metabolismo , Túbulos Renais/ultraestrutura , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Dados de Sequência Molecular , Mucoproteínas/química , Proteínas Mutantes/metabolismo , Transporte Proteico , Insuficiência Renal/patologia , Uromodulina , Privação de Água
11.
Kidney Int Rep ; 7(11): 2332-2344, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36531871

RESUMO

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare inherited disorder characterized by progressive loss of kidney function, nonsignificant urinalysis and tubulointerstitial fibrosis. ADTKD progresses to end stage renal disease (ESRD) in adulthood. The classification of ADTKD is an evolving concept and the agreement is now that, due to the overlap in terms of phenotype characteristics, this should be based on the involved gene. The umbrella term ADTKD therefore includes different conditions as follows: ADTKD-UMOD, ADKTD-MUC1, ADTKD-REN, and ADTK-HNF1B, with ADTKD-SEC61A1 and ADTKD-DNAJB11 as a further rare and atypical diagnosis recently described. The employment of next-generation sequencing (NGS) as a diagnostic tool in patients with familial kidney disease has improved the diagnostic accuracy in this field with ADTKD now being considered the third genetic cause of renal disease worldwide after autosomal dominant polycystic kidney disease (ADPKD) and Alport syndrome. On average, the disease pathogenesis is similar across the different subtypes, With the exception of HNF1B, the different mutated genes give rise to misfolded proteins leading to cellular stress and cytotoxicity. Research is now focused in better defining the underlying mechanism of fibrosis to guide therapeutic interventions. The aim of this review is to discuss how the knowledge of ADTKD has evolved in the last decades, with emphasis on the clinical features, molecular diagnosis, and pathogenic aspects of the different diseases included under the ADTKD term.

12.
Mol Genet Metab Rep ; 33: 100926, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36345359

RESUMO

Anderson-Fabry Disease (FD) is an X-linked lysosomal disorder caused by mutations in GLA, the gene encoding the lysosomal hydrolase α-galactosidase A (α-Gal A), leading to accumulation of glycosphingolipids in the lysosomes. FD is a multisystemic disorder leading to progressive cardiovascular, cerebrovascular and kidney dysfunction. Phenotypes are divided in two main classes, classic or non-classic, depending on substrate accumulation, age at onset, disease manifestation, severity and progression. The more severe classical phenotype is generally associated with mutations leading to absent or strongly reduced α-Gal A activity, while mutations with higher residual activity generally lead to the non-classical one. Approximately 70% of the over 1,000 Fabry disease-associated mutations are missense mutations, some leading to endoplasmic reticulum (ER) retention of mutant protein. We hypothesized that such mutations could be associated, besides the well-known absence of α-Gal A function/activity, to a possible gain of function effect due to production of a misfolded protein. We hence expressed α-Gal A missense mutations in HEK293 GLA -/- cells and investigated the localization of mutant protein and induction of ER stress and of the unfolded protein response (UPR). We selected a panel of 7 missense mutations, including mutants shown to have residual or no activity in vitro. Immunofluorescence analysis showed that mutants with residual activity have decreased lysosomal localization compared with wild type, and partial retention in the ER, while missense mutants with no residual activity are fully retained in the ER. UPR (ATF6 branch) was significantly induced by all but two mutants, with clear correlation with the extent of ER retention and the predicted mutation structural effect. These data identify a new molecular pathway, associated with gain of function effect, possibly involved in pathogenesis of FD.

13.
Nucleic Acids Res ; 36(15): 4902-12, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18653529

RESUMO

The fragile X mental retardation protein (FMRP) is a RNA-binding protein proposed to post-transcriptionally regulate the expression of genes important for neuronal development and synaptic plasticity. We previously demonstrated that FMRP binds to its own FMR1 mRNA via a guanine-quartet (G-quartet) RNA motif. However, the functional effect of this binding on FMR1 expression was not established. In this work, we characterized the FMRP binding site (FBS) within the FMR1 mRNA by a site directed mutagenesis approach and we investigated its importance for FMR1 expression. We show that the FBS in the FMR1 mRNA adopts two alternative G-quartet structures to which FMRP can equally bind. While FMRP binding to mRNAs is generally proposed to induce translational regulation, we found that mutations in the FMR1 mRNA suppressing binding to FMRP do not affect its translation in cellular models. We show instead that the FBS is a potent exonic splicing enhancer in a minigene system. Furthermore, FMR1 alternative splicing is affected by the intracellular level of FMRP. These data suggest that the G-quartet motif present in the FMR1 mRNA can act as a control element of its alternative splicing in a negative autoregulatory loop.


Assuntos
Processamento Alternativo , Proteína do X Frágil da Deficiência Intelectual/genética , Quadruplex G , RNA Mensageiro/química , Sequências Reguladoras de Ácido Ribonucleico , Adenina/química , Animais , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Éxons , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Células PC12 , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos
14.
Kidney Int Rep ; 5(9): 1472-1485, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32954071

RESUMO

INTRODUCTION: Autosomal dominant tubulo-interstitial kidney disease due to UMOD mutations (ADTKD-UMOD) is a rare condition associated with high variability in the age of end-stage kidney disease (ESKD). The minor allele of rs4293393, located in the promoter of the UMOD gene, is present in 19% of the population and downregulates uromodulin production by approximately 50% and might affect the age of ESKD. The goal of this study was to better understand the genetic and clinical characteristics of ADTKD-UMOD and to perform a Mendelian randomization study to determine if the minor allele of rs4293393 was associated with better kidney survival. METHODS: An international group of collaborators collected clinical and genetic data on 722 affected individuals from 249 families with 125 mutations, including 28 new mutations. The median age of ESKD was 47 years. Men were at a much higher risk of progression to ESKD (hazard ratio 1.78, P < 0.001). RESULTS: The allele frequency of the minor rs4293393 allele was only 11.6% versus the 19% expected (P < 0.01), resulting in Hardy-Weinberg disequilibrium and precluding a Mendelian randomization experiment. An in vitro score reflecting the severity of the trafficking defect of uromodulin mutants was found to be a promising predictor of the age of ESKD. CONCLUSION: We report the clinical characteristics associated with 125 UMOD mutations. Male gender and a new in vitro score predict age of ESKD.

15.
Hepatology ; 48(5): 1467-76, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18781669

RESUMO

UNLABELLED: Chronic hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC), but its role in the transformation process remains unclear. HBV encodes a small protein, known as HBx, which is required for infection and has been implicated in hepatocarcinogenesis. Here we show that HBx induces lagging chromosomes during mitosis, which in turn leads to formation of aberrant mitotic spindles and multinucleated cells. These effects require the binding of HBx to UV-damaged DNA binding protein 1 (DDB1), a protein involved in DNA repair and cell cycle regulation, and are unexpectedly attributable to HBx interfering with S-phase progression and not directly with mitotic events. HBx also affects S-phase and induces lagging chromosomes when expressed from its natural viral context and, consequently, exhibits deleterious activities in dividing, but not quiescent, hepatoma cells. CONCLUSION: In addition to its reported role in promoting HBV replication, the binding of HBx to DDB1 may induce genetic instability in regenerating hepatocytes and thereby contribute to HCC development, thus making this HBV-host protein interaction an attractive target for new therapeutic intervention.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Hepatite B Crônica/fisiopatologia , Transativadores/farmacologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Aberrações Cromossômicas/efeitos dos fármacos , Cromossomos Humanos/efeitos dos fármacos , Progressão da Doença , Genes Reporter , Proteínas de Fluorescência Verde/genética , Células HeLa , Antígenos da Hepatite B/fisiologia , Humanos , Neoplasias Hepáticas , Transativadores/fisiologia , Proteínas Virais Reguladoras e Acessórias
16.
Haematologica ; 94(6): 865-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19377078

RESUMO

To observe the effect of the new World Health Organization (WHO) criteria on the incidence of myeloproliferative neoplasms, we performed a retrospective study of a population-based registry in the Côte d'Or area, France, from 1980 to 2007. A total of 524 myeloproliferative neoplasms were registered for the 1980-2007 period, including 135 polycythemia vera, 308 essential thrombocythemia and 81 idiopathic myelofibroses. No change in the incidence of either polycythemia vera or idiopathic myelofibrosis was observed for the 2005-2007 period, compared to 1980-2004. On the contrary, a pronounced increase in the incidence of essential thrombocythemia was noted after 2005, mainly due to the use of JAK2 mutation screening and a lower threshold of platelet count. Our study confirms the relevance of the new WHO diagnostic criteria in allowing earlier diagnosis of essential thrombocythemia.


Assuntos
Transtornos Mieloproliferativos/diagnóstico , Sistema de Registros/estatística & dados numéricos , Trombocitemia Essencial/diagnóstico , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , França/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/epidemiologia , Estudos Retrospectivos , Trombocitemia Essencial/epidemiologia , Organização Mundial da Saúde , Adulto Jovem
17.
Sci Rep ; 9(1): 11601, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406136

RESUMO

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a genetically heterogeneous renal disorder leading to progressive loss of renal function. ADTKD-REN is due to rare mutations in renin, all localized in the protein leader peptide and affecting its co-translational insertion in the endoplasmic reticulum (ER). Through exome sequencing in an adult-onset ADTKD family we identified a new renin variant, p.L381P, mapping in the mature protein. To assess its pathogenicity, we combined genetic data, computational and predictive analysis and functional studies. The L381P substitution affects an evolutionary conserved residue, co-segregates with renal disease, is not found in population databases and is predicted to be deleterious by in silico tools and by structural modelling. Expression of the L381P variant leads to its ER retention and induction of the Unfolded Protein Response in cell models and to defective pronephros development in zebrafish. Our work shows that REN mutations outside of renin leader peptide can cause ADTKD and delineates an adult form of ADTKD-REN, a condition which has usually its onset in childhood. This has implications for the molecular diagnosis and the estimated prevalence of the disease and points at ER homeostasis as a common pathway affected in ADTKD-REN, and possibly more generally in ADTKD.


Assuntos
Genes Dominantes , Mutação , Nefrite Intersticial/genética , Renina/genética , Adulto , Idade de Início , Sequência de Aminoácidos , Retículo Endoplasmático/metabolismo , Humanos , Masculino , Nefrite Intersticial/metabolismo , Nefrite Intersticial/patologia , Linhagem , Renina/química
18.
Haematologica ; 93(11): 1723-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18728027

RESUMO

We analyzed the effect of hydroxyurea on the JAK2V617F allelic ratio (%JAK2V617F), measured in purified blood granulocytes, of patients with polycythemia vera and essential thrombocythemia. Thirty-six patients were examined sequentially prior to and after start of hydroxy-urea therapy (8 polycythemia vera, 17 essential thrombocythemia), or while remaining untreated (2 polycythemia vera, 9 essential thrombocythemia). Hydroxyurea therapy (median duration: 15 months) reduced the %JAK2V617F by >30% in 13/25 patients (4 polycythemia vera, 9 essential thrombocythemia). For 3 patients, JAK2V617F remained undetectable for 3-27 months. In addition, a single time point study of two large cohorts of patients, examined either at the time of diagnosis (99 polycythemia vera, 178 essential thrombocythemia) or while receiving hydroxyurea (36 polycythemia vera, 98 essential thrombocythemia; median length of therapy: 32 months), confirmed reduction of %JAK2V617F in the hydroxyurea-treated group (24% vs. 33% JAK2V617F at diagnosis, p<0.01). Prospective studies are needed to determine the prognostic value of reduced JAK2V617F allele burden under cytoreductive therapy.


Assuntos
Hidroxiureia/uso terapêutico , Janus Quinase 2/genética , Policitemia Vera/tratamento farmacológico , Trombocitemia Essencial/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Antidrepanocíticos/uso terapêutico , Estudos de Coortes , Primers do DNA , Feminino , Granulócitos/fisiologia , Humanos , Janus Quinase 2/sangue , Janus Quinase 2/deficiência , Masculino , Pessoa de Meia-Idade , Mutação , Policitemia Vera/genética , Estudos Retrospectivos , Trombocitemia Essencial/genética
19.
Cell Cycle ; 17(15): 1901-1916, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109813

RESUMO

Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the sensor inositol-requiring enzyme 1α (IRE1), an endoribonuclease that splices the mRNA of the transcription factor XBP1 (X-box-binding protein 1). To better understand the protein network that regulates the activity of the IRE1 pathway, we systematically screened the proteins that interact with IRE1 and identified a ribonuclease inhibitor called ribonuclease/angiogenin inhibitor 1 (RNH1). RNH1 is a leucine-rich repeat domains-containing protein that binds to and inhibits ribonucleases. Immunoprecipitation experiments confirmed this interaction. Docking experiments indicated that RNH1 physically interacts with IRE1 through its cytosolic RNase domain. Upon ER stress, the interaction of RNH1 with IRE1 in the ER increased at the expense of the nuclear pool of RNH1. Inhibition of RNH1 expression using siRNA mediated RNA interference upon ER stress led to an increased splicing activity of XBP1. Modulation of IRE1 RNase activity by RNH1 was recapitulated in a cell-free system, suggesting direct regulation of IRE1 by RNH. We conclude that RNH1 attenuates the activity of IRE1 by interacting with its ribonuclease domain. These findings have implications for understanding the molecular mechanism by which IRE1 signaling is attenuated upon ER stress.


Assuntos
Proteínas de Transporte/metabolismo , Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Transporte/farmacologia , Linhagem Celular Transformada , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Modelos Moleculares , Domínios Proteicos , Proteoma , Splicing de RNA , Uromodulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA