Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 20(32): 10038-51, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25043915

RESUMO

A new strategy to access highly monodisperse, heterobifunctional linear polyethylenglycols (PEGs) has been designed. This was built around unidirectional, iterative chain extension of a 3-arm PEG homostar. A mono-(4,4'-dimethoxytriphenylmethyl) octagol building block, DmtrO-EG8-OH, was constructed from tetragol. After six rounds of chain extension, the monodisperse homostar reached the unprecedented length of 56 monomers per arm (PEG2500). The unique architecture of the synthetic platform greatly assisted in facilitating and monitoring reaction completion, overcoming kinetic limitations, chromatographic purification of intermediates, and analytical assays. After chain terminal derivatisation, mild hydrogenolytic cleavage of the homostar hub provided heterobifunctional linear EG56 chains with a hydroxyl at one end, and either a toluene sulfonate, or a tert-butyl carboxylate ester at the other. A range of heterobifunctional, monodisperse PEGs was then prepared having useful cross-linking functionalities (-OH, -COOH, -NH2, -N3) at both ends. A rapid preparation of polydisperse PEG homostars, free of multiply cross-linked chains, is also described. The above approach should be extendable to other high value oligomers and polymers.

2.
Nat Chem ; 11(2): 136-145, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510218

RESUMO

Synthetic chemists have devoted tremendous effort towards the production of precision synthetic polymers with defined sequences and specific functions. However, the creation of a general technology that enables precise control over monomer sequence, with efficient isolation of the target polymers, is highly challenging. Here, we report a robust strategy for the production of sequence-defined synthetic polymers through a combination of liquid-phase synthesis and selective molecular sieving. The polymer is assembled in solution with real-time monitoring to ensure couplings proceed to completion, on a three-armed star-shaped macromolecule to maximize efficiency during the molecular sieving process. This approach is applied to the construction of sequence-defined polyethers, with side-arms at precisely defined locations that can undergo site-selective modification after polymerization. Using this versatile strategy, we have introduced structural and functional diversity into sequence-defined polyethers, unlocking their potential for real-life applications in nanotechnology, healthcare and information storage.

3.
Nat Chem ; 11(2): 184, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30622342

RESUMO

In the version of this Article originally published, the authors inadvertently cited ref. 10 in two places in the first paragraph. They would like to clarify that it should not have been cited in the sentence that starts "Polymer chemists have employed strategies such as single monomer insertion..." as it mistakenly implied that the IEG+ method described in ref. 10 could not produce unimolecular polymers; it can do so, as was demonstrated in ref. 10. The authors would also like to clarify that ref. 10 should not have been cited in the sentence that starts "Moreover, solid-phase synthesis is generally difficult to scale up...", as it implied that ref. 10 uses solid-phase synthesis; it does not, and is a purely liquid-phase process. The citation of ref. 10 has now been removed from these two sentences, but has been included elsewhere in the first two paragraphs of the Article as follows. In the first paragraph, at the end of the sentence "In iterative synthesis, specific monomers are added one at a time, or as multiples, to the end of a growing polymer chain, then reaction debris is separated from the chain extended polymer, and the cycle is repeated using the next monomer in the sequence10-12."; this sentence has been further amended to indicate multiple monomers can also be added. The reference has also been added to the end of the first sentence of the second paragraph, which starts "Consequently, liquid-phase iterative synthetic methods...", and in the third sentence of that paragraph, which now starts "For example, Johnson10, Whiting....".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA