Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 100(3): 1077-1117, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999507

RESUMO

Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-ß. The balance of male signals affects the nature of the female response, providing a mechanism of ?cryptic female choiceË® that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.


Assuntos
Genitália Feminina/fisiologia , Reprodução/fisiologia , Sêmen/fisiologia , Animais , Feminino , Inflamação , Masculino , Transdução de Sinais
2.
Proteomics ; 24(7): e2300253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37759396

RESUMO

Residing between the testes and the vas deferens, the epididymis is a highly convoluted tubule whose unique luminal microenvironment is crucial for the functional maturation of spermatozoa. This microenvironment is created by the combined secretory and resorptive activity of the lining epididymal epithelium, including the release of extracellular vesicles (epididymosomes), which encapsulate fertility modulating proteins and a myriad of small non-coding RNAs (sncRNAs) that are destined for delivery to recipient sperm cells. To enable investigation of this intercellular communication nexus, we have previously developed an immortalized mouse caput epididymal epithelial cell line (mECap18). Here, we describe the application of label-free mass spectrometry to characterize the mECap18 cell proteome and compare this to the proteome of native mouse caput epididymal epithelial cells. We report the identification of 5,313 mECap18 proteins, as many as 75.8% of which were also identified in caput epithelial cells wherein they mapped to broadly similar protein classification groupings. Furthermore, key pathways associated with protein synthesis (e.g., EIF2 signaling) and cellular protection in the male reproductive tract (e.g., sirtuin signaling) were enriched in both proteomes. This comparison supports the utility of the mECap18 cell line as a tractable in-vitro model for studying caput epididymal epithelial cell function.


Assuntos
Epididimo , Proteoma , Masculino , Animais , Camundongos , Epididimo/metabolismo , Proteoma/metabolismo , Sêmen , Testículo/metabolismo , Espermatozoides/metabolismo
3.
BMC Genomics ; 24(1): 590, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794337

RESUMO

BACKGROUND: Receptivity of the uterus is essential for embryo implantation and progression of mammalian pregnancy. Acquisition of receptivity involves major molecular and cellular changes in the endometrial lining of the uterus from a non-receptive state at ovulation, to a receptive state several days later. The precise molecular mechanisms underlying this transition and their upstream regulators remain to be fully characterized. Here, we aimed to generate a comprehensive profile of the endometrial transcriptome in the peri-ovulatory and peri-implantation states, to define the genes and gene pathways that are different between these states, and to identify new candidate upstream regulators of this transition, in the mouse. RESULTS: High throughput RNA-sequencing was utilized to identify genes and pathways expressed in the endometrium of female C57Bl/6 mice at estrus and on day 3.5 post-coitum (pc) after mating with BALB/c males (n = 3-4 biological replicates). Compared to the endometrium at estrus, 388 genes were considered differentially expressed in the endometrium on day 3.5 post-coitum. The transcriptional changes indicated substantial modulation of uterine immune and vascular systems during the pre-implantation phase, with the functional terms Angiogenesis, Chemotaxis, and Lymphangiogenesis predominating. Ingenuity Pathway Analysis software predicted the activation of several upstream regulators previously shown to be involved in the transition to receptivity including various cytokines, ovarian steroid hormones, prostaglandin E2, and vascular endothelial growth factor A. Our analysis also revealed four candidate upstream regulators that have not previously been implicated in the acquisition of uterine receptivity, with growth differentiation factor 2, lysine acetyltransferase 6 A, and N-6 adenine-specific DNA methyltransferase 1 predicted to be activated, and peptidylprolyl isomerase F predicted to be inhibited. CONCLUSIONS: This study confirms that the transcriptome of a receptive uterus is vastly different to the non-receptive uterus and identifies several genes, regulatory pathways, and upstream drivers not previously associated with implantation. The findings will inform further research to investigate the molecular mechanisms of uterine receptivity.


Assuntos
Transcriptoma , Fator A de Crescimento do Endotélio Vascular , Gravidez , Masculino , Feminino , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Endométrio/metabolismo , Implantação do Embrião/genética , Útero , Mamíferos/genética
4.
Mol Cell Proteomics ; 20: 100107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34089863

RESUMO

Seminal vesicles are an integral part of the male reproductive accessory gland system. They produce a complex array of secretions containing bioactive constituents that support gamete function and promote reproductive success, with emerging evidence suggesting these secretions are influenced by our environment. Despite their significance, the biology of seminal vesicles remains poorly defined. Here, we complete the first proteomic assessment of mouse seminal vesicles and assess the impact of the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or control daily for five consecutive days prior to collecting seminal vesicle tissue. A total of 5013 proteins were identified in the seminal vesicle proteome with bioinformatic analyses identifying cell proliferation, protein synthesis, cellular death, and survival pathways as prominent biological processes. Secreted proteins were among the most abundant, and several proteins are linked with seminal vesicle phenotypes. Analysis of the effect of acrylamide on the seminal vesicle proteome revealed 311 differentially regulated (FC ± 1.5, p ≤ 0.05, 205 up-regulated, 106 downregulated) proteins, orthogonally validated via immunoblotting and immunohistochemistry. Pathways that initiate protein synthesis to promote cellular survival were prominent among the dysregulated pathways, and rapamycin-insensitive companion of mTOR (RICTOR, p = 6.69E-07) was a top-ranked upstream driver. Oxidative stress was implicated as contributing to protein changes, with acrylamide causing an increase in 8-OHdG in seminal vesicle epithelial cells (fivefold increase, p = 0.016) and the surrounding smooth muscle layer (twofold increase, p = 0.043). Additionally, acrylamide treatment caused a reduction in seminal vesicle secretion weight (36% reduction, p = 0.009) and total protein content (25% reduction, p = 0.017). Together these findings support the interpretation that toxicant exposure influences male accessory gland physiology and highlights the need to consider the response of all male reproductive tract tissues when interpreting the impact of environmental stressors on male reproductive function.


Assuntos
Acrilamida/toxicidade , Poluentes Ambientais/toxicidade , Glândulas Seminais/efeitos dos fármacos , Animais , Exposição Ambiental , Masculino , Camundongos , Proteoma/efeitos dos fármacos , Proteômica , Glândulas Seminais/metabolismo
5.
Proteomics ; 22(9): e2100227, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35014747

RESUMO

The seminal vesicles are male accessory sex glands that contribute the major portion of the seminal plasma in which mammalian spermatozoa are bathed during ejaculation. In addition to conveying sperm through the ejaculatory duct, seminal vesicle secretions support sperm survival after ejaculation, and influence the female reproductive tract to promote receptivity to pregnancy. Analysis of seminal vesicle fluid (SVF) composition by proteomics has proven challenging, due to its highly biased protein signature with a small subset of dominant proteins and the difficulty of solubilizing this viscous fluid. As such, publicly available proteomic datasets identify only 85 SVF proteins in total. To address this limitation, we report a new preparative methodology involving sequential solubilization of mouse SVF in guanidine hydrochloride, acetone precipitation, and analysis by label-free mass spectrometry. Using this strategy, we identified 126 SVF proteins, including 83 previously undetected in SVF. Members of the seminal vesicle secretory protein family were the most abundant, accounting for 79% of all peptide spectrum matches. Functional analysis identified inflammation and formation of the vaginal plug as the two most prominent biological processes. Other notable processes included modulation of sperm function and regulation of the female reproductive tract immune environment. Together, these findings provide a robust methodological framework for future SVF studies and identify novel proteins with potential to influence both male and female reproductive physiology.


Assuntos
Proteômica , Glândulas Seminais , Animais , Feminino , Masculino , Mamíferos , Camundongos , Gravidez , Proteínas/metabolismo , Proteômica/métodos , Sêmen/metabolismo , Glândulas Seminais/metabolismo , Espermatozoides/metabolismo
6.
BMC Genomics ; 22(1): 728, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625024

RESUMO

BACKGROUND: The seminal vesicles synthesise bioactive factors that support gamete function, modulate the female reproductive tract to promote implantation, and influence developmental programming of offspring phenotype. Despite the significance of the seminal vesicles in reproduction, their biology remains poorly defined. Here, to advance understanding of seminal vesicle biology, we analyse the mouse seminal vesicle transcriptome under normal physiological conditions and in response to acute exposure to the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or vehicle control daily for five consecutive days prior to collecting seminal vesicle tissue 72 h following the final injection. RESULTS: A total of 15,304 genes were identified in the seminal vesicles with those encoding secreted proteins amongst the most abundant. In addition to reproductive hormone pathways, functional annotation of the seminal vesicle transcriptome identified cell proliferation, protein synthesis, and cellular death and survival pathways as prominent biological processes. Administration of acrylamide elicited 70 differentially regulated (fold-change ≥1.5 or ≤ 0.67) genes, several of which were orthogonally validated using quantitative PCR. Pathways that initiate gene and protein synthesis to promote cellular survival were prominent amongst the dysregulated pathways. Inflammation was also a key transcriptomic response to acrylamide, with the cytokine, Colony stimulating factor 2 (Csf2) identified as a top-ranked upstream driver and inflammatory mediator associated with recovery of homeostasis. Early growth response (Egr1), C-C motif chemokine ligand 8 (Ccl8), and Collagen, type V, alpha 1 (Col5a1) were also identified amongst the dysregulated genes. Additionally, acrylamide treatment led to subtle changes in the expression of genes that encode proteins secreted by the seminal vesicle, including the complement regulator, Complement factor b (Cfb). CONCLUSIONS: These data add to emerging evidence demonstrating that the seminal vesicles, like other male reproductive tract tissues, are sensitive to environmental insults, and respond in a manner with potential to exert impact on fetal development and later offspring health.


Assuntos
Glândulas Seminais , Transcriptoma , Acrilamida/toxicidade , Animais , Citocinas , Feminino , Masculino , Camundongos , Reprodução/genética
7.
Am J Pathol ; 190(5): 977-993, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084371

RESUMO

Animal models of cystic fibrosis (CF) are essential for investigating disease mechanisms and trialing potential therapeutics. This study generated two CF rat models using clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 gene editing. One rat model carries the common human Phe508del (ΔF508) CF transmembrane conductance regulator (CFTR) mutation, whereas the second is a CFTR knockout model. Phenotype was characterized using a range of functional and histologic assessments, including nasal potential difference to measure electrophysiological function in the upper airways, RNAscope in situ hybridization and quantitative PCR to assess CFTR mRNA expression in the lungs, immunohistochemistry to localize CFTR protein in the airways, and histopathologic assessments in a range of tissues. Both rat models revealed a range of CF manifestations, including reduced survival, intestinal obstruction, bioelectric defects in the nasal epithelium, histopathologic changes in the trachea, large intestine, and pancreas, and abnormalities in the development of the male reproductive tract. The CF rat models presented herein will prove useful for longitudinal assessments of pathophysiology and therapeutics.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística , Modelos Animais de Doenças , Edição de Genes/métodos , Animais , Sistemas CRISPR-Cas , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Camundongos Knockout , Mutação , Fenótipo , Ratos , Ratos Sprague-Dawley
8.
J Immunol ; 203(3): 647-657, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243091

RESUMO

Regulatory T cells (Tregs) are essential for maternal tolerance in allogeneic pregnancy. In preeclampsia, Tregs are fewer and display aberrant phenotypes, particularly in the thymic Treg (tTreg) compartment, potentially because of insufficient priming to male partner alloantigens before conception. To investigate how tTregs as well as peripheral Tregs (pTregs) respond to male partner seminal fluid, Foxp3+CD4+ Tregs were examined in the uterus and uterus-draining lymph nodes in virgin estrus mice and 3.5 d postcoitum. Mating elicited 5-fold increases in uterine Tregs accompanied by extensive Treg proliferation in the uterus-draining lymph nodes, comprising 70% neuropilin 1+ tTregs and 30% neuropilin 1- pTregs. Proliferation marker Ki67 and suppressive competence markers Foxp3 and CTLA4 were induced after mating in both subsets, and Ki67, CTLA4, CD25, and GITR were higher in tTregs than in pTregs. Analysis by t-stochastic neighbor embedding confirmed phenotypically distinct tTreg and pTreg clusters, with the proportion of tTregs but not pTregs among CD4+ T cells expanding in response to seminal fluid. Bisulphite sequencing revealed increased demethylation of the Treg-specific demethylation region in the Foxp3 locus in tTregs but not pTregs after mating. These data show that tTregs and pTregs with distinct phenotypes both respond to seminal fluid priming, but the Foxp3 epigenetic signature is uniquely increased in tTregs. We conclude that reproductive tract tTregs as well as pTregs are sensitive to local regulation by seminal fluid, providing a candidate mechanism warranting evaluation for the potential to influence preeclampsia susceptibility in women.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Sêmen/imunologia , Comportamento Sexual Animal , Linfócitos T Reguladores/imunologia , Útero/imunologia , Animais , Antígeno CTLA-4/metabolismo , Proliferação de Células/fisiologia , Epigênese Genética , Feminino , Fatores de Transcrição Forkhead/genética , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Linfonodos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/patologia , Gravidez , Timo/citologia , Útero/citologia
9.
Biol Reprod ; 99(3): 514-526, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29596569

RESUMO

Seminal fluid interacts with the female reproductive tract to initiate a permissive immune response that facilitates embryo implantation and pregnancy success. The immune-regulatory cytokine interferon-γ (IFNG), which can be elevated in seminal plasma, is associated with reduced fertility. Here, we investigated how IFNG influences the female immune response to seminal fluid. In human Ect1 cervical epithelial cells, IFNG added at physiologically relevant concentrations substantially impaired seminal plasma-induced synthesis of key cytokines colony-stimulating factor 2 (CSF2) and interleukin-6 (IL6). Seminal fluid-induced CSF2 synthesis was also suppressed in the uterus of mice in vivo, when IFNG was delivered transcervically 12 h after mating. Transforming growth factor B1 (TGFB1) is the major seminal fluid signaling factor which elicits CSF2 induction, and IFNG exhibited potent dose-dependent suppression of CSF2 synthesis induced by TGFB1 in murine uterine epithelial cells in vitro. Similarly, IFNG suppressed TGFB1-mediated CSF2 induction in Ect1 cells and human primary cervical epithelial cells; however, IL6 regulation by IFNG was independent of TGFB1. Quantitative PCR confirmed that CSF2 regulation by IFNG in Ect1 cells occurs at the gene transcription level, secondary to IFNG suppression of TGFBR2 encoding TGFB receptor 2. Conversely, TGFB1 suppressed IFNG receptor 1 and 2 genes IFNGR1 and IFNGR2. These data identify IFNG as a potent inhibitor of the TGFB-mediated seminal fluid interaction with relevant reproductive tract epithelia in mice and human. These findings raise the prospect that IFNG in the male partner's seminal fluid impairs immune adaptation for pregnancy following coitus in women.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Interferon gama/farmacologia , Sêmen/fisiologia , Útero/metabolismo , Animais , Células Cultivadas , Colo do Útero/metabolismo , Citocinas/biossíntese , Citocinas/genética , Células Epiteliais/química , Células Epiteliais/metabolismo , Feminino , Humanos , Tolerância Imunológica/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez , RNA Mensageiro/análise , Reprodução/imunologia , Sêmen/imunologia , Fator de Crescimento Transformador beta1/farmacologia
10.
Mol Reprod Dev ; 84(9): 914-925, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28452160

RESUMO

The reproductive tract environment at conception programs the developmental trajectory of the embryo, sets the course of pregnancy, and impacts offspring phenotype and health. Despite the fundamental importance of this stage of reproduction, the rate-limiting regulatory mechanisms operating locally to control fertility and fecundity are incompletely understood. Emerging studies highlight roles for microRNAs (miRNAs) in regulating reproductive and developmental processes and in modulating the quality and strength of the female immune response. Since endometrial receptivity and robust placentation require specific adaptation of the immune response, we hypothesize that miRNAs participate in establishing pregnancy through effects on key gene networks in immune cells. Our recent studies investigated miRNAs that are induced in the peri-conception environment, focusing on miRNAs that have immune-regulatory roles-particularly miR-223, miR-155, and miR-146a. Genetic mouse models deficient in individual miRNAs are proving informative in defining roles for these miRNAs in the generation and stabilization of regulatory T cells (Treg cells) that confer adaptive immune tolerance. Overlapping and redundant functions between miRNAs that target multiple genes, combined with multiple miRNAs targeting individual genes, indicate complex and sensitive regulatory networks. Although to date most data on miRNA regulation of reproductive events are from mice, conserved functions of miRNAs across species imply similar biological pathways operate in all mammals. Understanding the regulation and roles of miRNAs in the peri-conception immune response will advance our knowledge of how environmental determinants act at conception, and could have practical applications for animal breeding as well as human fertility.


Assuntos
Fertilidade/imunologia , Tolerância Imunológica , MicroRNAs/imunologia , Placentação/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Humanos , Camundongos , Gravidez
11.
Proc Natl Acad Sci U S A ; 111(6): 2200-5, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24469827

RESUMO

Paternal characteristics and exposures influence physiology and disease risks in progeny, but the mechanisms are mostly unknown. Seminal fluid, which affects female reproductive tract gene expression as well as sperm survival and integrity, provides one potential pathway. We evaluated in mice the consequences for offspring of ablating the plasma fraction of seminal fluid by surgical excision of the seminal vesicle gland. Conception was substantially impaired and, when pregnancy did occur, placental hypertrophy was evident in late gestation. After birth, the growth trajectory and metabolic parameters of progeny were altered, most profoundly in males, which exhibited obesity, distorted metabolic hormones, reduced glucose tolerance, and hypertension. Altered offspring phenotype was partly attributable to sperm damage and partly to an effect of seminal fluid deficiency on the female tract, because increased adiposity was also evident in adult male progeny when normal two-cell embryos were transferred to females mated with seminal vesicle-excised males. Moreover, embryos developed in female tracts not exposed to seminal plasma were abnormal from the early cleavage stages, but culture in vitro partly alleviated this. Absence of seminal plasma was accompanied by down-regulation of the embryotrophic factors Lif, Csf2, Il6, and Egf and up-regulation of the apoptosis-inducing factor Trail in the oviduct. These findings show that paternal seminal fluid composition affects the growth and health of male offspring, and reveal that its impact on the periconception environment involves not only sperm protection but also indirect effects on preimplantation embryos via oviduct expression of embryotrophic cytokines.


Assuntos
Genitália Feminina/fisiologia , Sêmen , Animais , Pressão Sanguínea , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Fenótipo
12.
Biol Reprod ; 93(3): 68, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26157066

RESUMO

Seminal fluid interacts with epithelial cells lining the female reproductive tract to induce expression of proinflammatory cytokines and chemokines, initiating immune tolerance mechanisms to facilitate pregnancy. TGFB cytokines are key signaling agents in seminal plasma but do not fully account for the female response to seminal fluid. We hypothesized that additional molecular pathways are utilized in seminal fluid signaling. Affymetrix microarray was employed to compare gene expression in the endometrium of mice 8 h after mating with either intact males or seminal fluid deficient (SVX/VAS) males. Bioinformatics analysis revealed TLR4 signaling as a strongly predicted upstream regulator activated by the differentially expressed genes and implicated TGFB signaling as a second key pathway. Quantitative PCR and microbead data confirmed that seminal fluid induces endometrial synthesis of several TLR4-regulated cytokines and chemokines, including CSF3, CXCL1, CXCL2, IL1A, IL6, LIF, and TNF. In primary uterine epithelial cells, CSF3, CXCL1, and CXCL2 were strongly induced by the TLR4 ligand LPS but suppressed by TGFB, while IL1A, TNF, and CSF2 were induced by both ligands. TLR4 was confirmed as essential for the full endometrial cytokine response using mice with a null mutation in Tlr4, where seminal fluid failed to induce endometrial Csf3, Cxcl2, Il6, and Tnf expression. This study provides evidence that TLR4 contributes to seminal fluid modulation of the periconception immune environment. Activation of TLR4 signaling by microbial or endogenous components of seminal fluid is thus implicated as a key element of the female tract response to seminal fluid at the outset of pregnancy in mice.


Assuntos
Genitália Feminina/fisiologia , Sêmen , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia , Animais , Quimiocinas/metabolismo , Quimiocinas/fisiologia , Biologia Computacional , Citocinas/metabolismo , Citocinas/fisiologia , Regulação para Baixo , Endométrio/citologia , Endométrio/fisiologia , Endotoxinas/farmacologia , Células Epiteliais/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Receptor 4 Toll-Like/biossíntese , Fator de Crescimento Transformador beta/fisiologia , Útero/citologia , Útero/fisiologia
13.
Biol Reprod ; 93(4): 95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26224007

RESUMO

Maternal interleukin (IL) 10 deficiency elevates susceptibility to fetal loss induced by the model Toll-like receptor agonist lipopolysaccharide, but the mechanisms are not well elucidated. Here, we show that Il10 null mutant (Il10(-/-)) mice exhibit altered local T cell responses in pregnancy, exhibiting pronounced hyperplasia in para-aortic lymph nodes draining the uterus with >6-fold increased CD4(+) and CD8(+) T cells compared with wild-type controls. Among these CD4(+) cells, Foxp3(+) T regulatory (Treg) cells were substantially enriched, with 11-fold higher numbers at Day 9.5 postcoitum. Lymph node hypertrophy in Il10(-/-) mice was associated with more activated phenotypes in dendritic cells and macrophages, with elevated expression of MHCII, scavenger receptor, and CD80. Affymetrix microarray revealed an altered transcriptional profile in Treg cells from pregnant Il10(-/-) mice, with elevated expression of Ctse (cathepsin E), Il1r1, Il12rb2, and Ifng. In vitro, Il10(-/-) Treg cells showed reduced steady-state Foxp3 expression, and polyclonal stimulation caused greater loss of Foxp3 and reduced capacity to suppress IL17 in CD4(+)Foxp3(-) T cells. We conclude that despite a substantially expanded Treg cell pool, the diminished stability of Treg cells, increased numbers of effector T cells, and altered phenotypes in dendritic cells and macrophages in pregnancy all potentially confer vulnerability to inflammation-induced fetal loss in Il10(-/-) mice. These findings suggest that IL10 has a pivotal role in facilitating robust immune protection of the fetus from inflammatory challenge and that IL10 deficiency could contribute to human gestational disorders in which altered T cell responses are implicated.


Assuntos
Células Dendríticas/metabolismo , Perda do Embrião/genética , Fatores de Transcrição Forkhead/genética , Interleucina-10/genética , Lipopolissacarídeos/toxicidade , Linfócitos T Reguladores/metabolismo , Animais , Citocinas/metabolismo , Feminino , Hiperplasia/genética , Hiperplasia/patologia , Interleucina-17/genética , Interleucina-17/metabolismo , Linfonodos/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pré-Eclâmpsia/genética , Gravidez
14.
Adv Exp Med Biol ; 868: 127-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26178848

RESUMO

Carriage of sperm is not the only function of seminal fluid in mammals. Studies in mice show that at conception, seminal fluid interacts with the female reproductive tract to induce responses which influence whether or not pregnancy will occur, and to set in train effects that help shape subsequent fetal development. In particular, seminal fluid initiates female immune adaptation processes required to tolerate male transplantation antigens present in seminal fluid and inherited by the conceptus. A tolerogenic immune environment to facilitate pregnancy depends on regulatory T cells (Treg cells), which recognise male antigens and function to suppress inflammation and immune rejection responses. The female response to seminal fluid stimulates the generation of Treg cells that protect the conceptus from inflammatory damage, to support implantation and placental development. Seminal fluid also elicits molecular and cellular changes in the oviduct and endometrium that directly promote embryo development and implantation competence. The plasma fraction of seminal fluid plays a key role in this process with soluble factors, including TGFB, prostaglandin-E, and TLR4 ligands, demonstrated to contribute to the peri-conception immune environment. Recent studies show that conception in the absence of seminal plasma in mice impairs embryo development and alters fetal development to impact the phenotype of offspring, with adverse effects on adult metabolic function particularly in males. This review summarises our current understanding of the molecular responses to seminal fluid and how this contributes to the establishment of pregnancy, generation of an immune-regulatory environment and programming long-term offspring health.


Assuntos
Reprodução , Sêmen/metabolismo , Transdução de Sinais , Animais , Feminino , Humanos , Masculino
15.
Adv Exp Med Biol ; 843: 173-213, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25956299

RESUMO

In the physiological situation, cytokines are pivotal mediators of communication between the maternal tract and the embryo. Compelling evidence shows that cytokines emanating from the oviduct and uterus confer a sophisticated mechanism for 'fine-tuning' of embryo development, influencing a range of cellular events from cell survival and metabolism, through division and differentiation, and potentially exerting long-term impact through epigenetic remodelling. The balance between survival agents, including GM-CSF, CSF1, LIF, HB-EGF and IGFII, against apoptosis-inducing factors such as TNFα, TRAIL and IFNg, influence the course of preimplantation development, causing embryos to develop normally, adapt to varying maternal environments, or in some cases to arrest and undergo demise. Maternal cytokine-mediated pathways help mediate the biological effects of embryo programming, embryo plasticity and adaptation, and maternal tract quality control. Thus maternal cytokines exert influence not only on fertility and pregnancy progression but on the developmental trajectory and health of offspring. Defining a clear understanding of the biology of cytokine networks influencing the embryo is essential to support optimal outcomes in natural and assisted conception.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Tubas Uterinas/metabolismo , Fatores de Crescimento de Células Hematopoéticas/metabolismo , Útero/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Blastocisto/citologia , Sobrevivência Celular , Feminino , Fertilização , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Crescimento de Células Hematopoéticas/genética , Humanos , Gravidez , Transdução de Sinais
16.
Andrology ; 12(5): 1038-1057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38576152

RESUMO

BACKGROUND: The epididymis has long been of interest owing to its role in promoting the functional maturation of the male germline. More recent evidence has also implicated the epididymis as an important sensory tissue responsible for remodeling of the sperm epigenome, both under physiological conditions and in response to diverse forms of environmental stress. Despite this knowledge, the intricacies of the molecular pathways involved in regulating the adaptation of epididymal tissue to paternal stressors remains to be fully resolved. OBJECTIVE: The overall objective of this study was to investigate the direct impact of corticosterone challenge on a tractable epididymal epithelial cell line (i.e., mECap18 cells), in terms of driving adaptation of the cellular proteome and phosphoproteome signaling networks. MATERIALS AND METHODS: The newly developed phosphoproteomic platform EasyPhos coupled with sequencing via an Orbitrap Exploris 480 mass spectrometer, was applied to survey global changes in the mECap18 cell (phospho)proteome resulting from sub-chronic (10-day) corticosterone challenge. RESULTS: The imposed corticosterone exposure regimen elicited relatively subtle modifications of the global mECap18 proteome (i.e., only 73 out of 4171 [∼1.8%] proteins displayed altered abundance). By contrast, ∼15% of the mECap18 phosphoproteome was substantially altered following corticosterone challenge. In silico analysis of the corresponding parent proteins revealed an activation of pathways linked to DNA damage repair and oxidative stress responses as well as a reciprocal inhibition of pathways associated with organismal death. Corticosterone challenge also induced the phosphorylation of several proteins linked to the biogenesis of microRNAs. Accordingly, orthogonal validation strategies confirmed an increase in DNA damage, which was ameliorated upon selective kinase inhibition, and an altered abundance profile of a subset of microRNAs in corticosterone-treated cells. CONCLUSIONS: Together, these data confirm that epididymal epithelial cells are reactive to corticosterone challenge, and that their response is tightly coupled to the opposing action of cellular kinases and phosphatases.


Assuntos
Corticosterona , Epididimo , Células Epiteliais , Proteômica , Masculino , Epididimo/metabolismo , Epididimo/efeitos dos fármacos , Animais , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Corticosterona/farmacologia , Proteômica/métodos , Linhagem Celular , Proteoma/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645090

RESUMO

During mammalian reproduction, sperm are delivered to the female reproductive tract bathed in a complex medium known as seminal fluid, which plays key roles in signaling to the female reproductive tract and in nourishing sperm for their onwards journey. Along with minor contributions from the prostate and the epididymis, the majority of seminal fluid is produced by a somewhat understudied organ known as the seminal vesicle. Here, we report the first single-cell RNA-seq atlas of the mouse seminal vesicle, generated using tissues obtained from 23 mice of varying ages, exposed to a range of dietary challenges. We define the transcriptome of the secretory cells in this tissue, identifying a relatively homogeneous population of the epithelial cells which are responsible for producing the majority of seminal fluid. We also define the immune cell populations - including large populations of macrophages, dendritic cells, T cells, and NKT cells - which have the potential to play roles in producing various immune mediators present in seminal plasma. Together, our data provide a resource for understanding the composition of an understudied reproductive tissue with potential implications for paternal control of offspring development and metabolism.

18.
Front Endocrinol (Lausanne) ; 14: 1145533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909306

RESUMO

Male infertility is a commonly encountered pathology that is estimated to be a contributory factor in approximately 50% of couples seeking recourse to assisted reproductive technologies. Upon clinical presentation, such males are commonly subjected to conventional diagnostic andrological practices that rely on descriptive criteria to define their fertility based on the number of morphologically normal, motile spermatozoa encountered within their ejaculate. Despite the virtual ubiquitous adoption of such diagnostic practices, they are not without their limitations and accordingly, there is now increasing awareness of the importance of assessing sperm quality in order to more accurately predict a male's fertility status. This realization raises the important question of which characteristics signify a high-quality, fertilization competent sperm cell. In this review, we reflect on recent advances in our mechanistic understanding of sperm biology and function, which are contributing to a growing armory of innovative approaches to diagnose and treat male infertility. In particular we review progress toward the implementation of precision medicine; the robust clinical adoption of which in the setting of fertility, currently lags well behind that of other fields of medicine. Despite this, research shows that the application of advanced technology platforms such as whole exome sequencing and proteomic analyses hold considerable promise in optimizing outcomes for the management of male infertility by uncovering and expanding our inventory of candidate infertility biomarkers, as well as those associated with recurrent pregnancy loss. Similarly, the development of advanced imaging technologies in tandem with machine learning artificial intelligence are poised to disrupt the fertility care paradigm by advancing our understanding of the molecular and biological causes of infertility to provide novel avenues for future diagnostics and treatments.


Assuntos
Inteligência Artificial , Infertilidade Masculina , Gravidez , Feminino , Humanos , Masculino , Proteômica , Sêmen , Reprodução , Infertilidade Masculina/diagnóstico , Espermatozoides
19.
Sci Signal ; 16(778): eabp9586, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976863

RESUMO

Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples. The oxidation or phosphorylation of signaling proteins that mediate growth and proliferation was increased in samples from patient subtypes with FLT3 mutations. These samples also showed increases in the oxidation of proteins in the ROS-producing Rac/NADPH oxidase-2 (NOX2) complex. Inhibition of NOX2 increased the apoptosis of FLT3-mutant AML cells in response to FLT3 inhibitors. NOX2 inhibition also reduced the phosphorylation and cysteine oxidation of FLT3 in patient-derived xenograft mouse models, suggesting that decreased oxidative stress reduces the oncogenic signaling of FLT3. In mice grafted with FLT3 mutant AML cells, treatment with a NOX2 inhibitor reduced the number of circulating cancer cells, and combining FLT3 and NOX2 inhibitors increased survival to a greater extent than either treatment alone. Together, these data raise the possibility that combining NOX2 and FLT3 inhibitors could improve the treatment of FLT3 mutant AML.


Assuntos
Cisteína , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Cisteína/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Modelos Animais de Doenças , Linhagem Celular Tumoral , Tirosina Quinase 3 Semelhante a fms/genética
20.
Nat Rev Urol ; 19(12): 727-750, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100661

RESUMO

Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.


Assuntos
Reforma dos Serviços de Saúde , Infertilidade Masculina , Masculino , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/diagnóstico , Incidência , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA