Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Prev Cardiol ; 30(15): 1554-1568, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37185661

RESUMO

AIMS: Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment. METHODS AND RESULTS: Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting. CONCLUSION: Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease.


Traffic noise, e.g. from aircraft, significantly contributes to an increased risk of cardiovascular or metabolic diseases in the general population by brain-dependent stress reactions leading to higher levels of circulating stress hormones and vasoconstrictors, all of which cause hypertension, oxidative stress, and inflammation. With the present experimental studies, we provide for the first time molecular mechanisms responsible for successful noise mitigation: Physical exercise, intermittent fasting, and pharmacological activation of the adenosine monophosphate-activated protein kinase (AMPK), a metabolic master regulator protein, prevent cardiovascular damage caused by noise exposure, such as hypertension, endothelial dysfunction, and reactive oxygen species formation (e.g. free radicals) and inflammation.These beneficial mitigation manoeuvers are secondary to an activation of the endothelial AMPK, thereby mimicking the antidiabetic drug metformin.


Assuntos
Endotélio Vascular , Ruído dos Transportes , Humanos , Camundongos , Animais , Endotélio Vascular/metabolismo , Estresse Oxidativo , Ruído dos Transportes/efeitos adversos , Jejum , Aeronaves , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia
2.
Antioxidants (Basel) ; 10(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34943078

RESUMO

Voluntary exercise training is an effective way to prevent cardiovascular disease, since it results in increased NO bioavailability and decreased reactive oxygen species (ROS) production. AMP-activated protein kinase (AMPK), especially its α1AMPK subunit, modulates ROS-dependent vascular homeostasis. Since endothelial cells play an important role in exercise-induced changes of vascular signaling, we examined the consequences of endothelial-specific α1AMPK deletion during voluntary exercise training. We generated a mouse strain with specific deletion of α1AMPK in endothelial cells (α1AMPKflox/flox x TekCre+). While voluntary exercise training improved endothelial function in wild-type mice, it had deleterious effects in mice lacking endothelial α1AMPK indicated by elevated reactive oxygen species production (measured by dihydroethidum fluorescence and 3-nitrotyrosine staining), eNOS uncoupling and endothelial dysfunction. Importantly, the expression of the phagocytic NADPH oxidase isoform (NOX-2) was down-regulated by exercise in control mice, whereas it was up-regulated in exercising α1AMPKflox/flox x TekCre+ animals. In addition, nitric oxide bioavailability was decreased and the antioxidant/protective nuclear factor erythroid 2-related factor 2 (Nrf-2) response via heme oxygenase 1 and uncoupling protein-2 (UCP-2) was impaired in exercising α1AMPKflox/flox x TekCre+ mice. Our results demonstrate that endothelial α1AMPK is a critical component of the signaling events that enable vascular protection in response to exercise. Moreover, they identify endothelial α1AMPK as a master switch that determines whether the effects of exercise on the vasculature are protective or detrimental.

3.
Antioxidants (Basel) ; 8(11)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661873

RESUMO

BACKGROUND: Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) are generated within the organism. Whereas physiological formation rates confer redox regulation of essential cellular functions and provide the basis for adaptive stress responses, their excessive formation contributes to impaired cellular function or even cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, quantification of RONS formation and knowledge of their tissue/cell/compartment-specific distribution is of great biological and clinical importance. METHODS: Here, we used a high-performance/pressure liquid chromatography (HPLC) assay to quantify the superoxide-specific oxidation product of the mitochondria-targeted fluorescence dye triphenylphosphonium-linked hydroethidium (mitoSOX) in biochemical systems and three animal models with established oxidative stress. Type 1 diabetes (single injection of streptozotocin), hypertension (infusion of angiotensin-II for 7 days) and nitrate tolerance (infusion of nitroglycerin for 4 days) was induced in male Wistar rats. RESULTS: The usefulness of mitoSOX/HPLC for quantification of mitochondrial superoxide was confirmed by xanthine oxidase activity as well as isolated stimulated rat heart mitochondria in the presence or absence of superoxide scavengers. Vascular function was assessed by isometric tension methodology and was impaired in the rat models of oxidative stress. Vascular dysfunction correlated with increased mitoSOX oxidation but also classical RONS detection assays as well as typical markers of oxidative stress. CONCLUSION: mitoSOX/HPLC represents a valid method for detection of mitochondrial superoxide formation in tissues of different animal disease models and correlates well with functional parameters and other markers of oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA