Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37303204

RESUMO

Neuronal dense-core vesicles (DCVs) contain neuropeptides and much larger proteins that affect synaptic growth and plasticity. Rather than using full collapse exocytosis that commonly mediates peptide hormone release by endocrine cells, DCVs at the Drosophila neuromuscular junction release their contents via fusion pores formed by kiss-and-run exocytosis. Here, we used fluorogen-activating protein (FAP) imaging to reveal the permeability range of synaptic DCV fusion pores and then show that this constraint is circumvented by cAMP-induced extra fusions with dilating pores that result in DCV emptying. These Ca2+-independent full fusions require PKA-R2, a PKA phosphorylation site on Complexin and the acute presynaptic function of Rugose, the homolog of mammalian neurobeachin, a PKA-R2 anchor implicated in learning and autism. Therefore, localized Ca2+-independent cAMP signaling opens dilating fusion pores to release large cargoes that cannot pass through the narrower fusion pores that mediate spontaneous and activity-dependent neuropeptide release. These results imply that the fusion pore is a variable filter that differentially sets the composition of proteins released at the synapse by independent exocytosis triggers responsible for routine peptidergic transmission (Ca2+) and synaptic development (cAMP).


Assuntos
Proteínas de Drosophila , Neuropeptídeos , Animais , Vesículas Sinápticas/metabolismo , Cálcio/metabolismo , Sinapses/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Transmissão Sináptica/fisiologia , Neuropeptídeos/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Mamíferos/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(33): e2207829119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943988

RESUMO

Although patients generally prefer oral drug delivery to injections, low permeability of the gastrointestinal tract makes this method impossible for most biomacromolecules. One potential solution is codelivery of macromolecules, including therapeutic proteins or nucleic acids, with intestinal permeation enhancers; however, enhancer use has been limited clinically by modest efficacy and toxicity concerns surrounding long-term administration. Here, we hypothesized that plant-based foods, which are well tolerated by the gastrointestinal tract, may contain compounds that enable oral macromolecular absorption without causing adverse effects. Upon testing more than 100 fruits, vegetables, and herbs, we identified strawberry and its red pigment, pelargonidin, as potent, well-tolerated enhancers of intestinal permeability. In mice, an oral capsule formulation comprising pelargonidin and a 1 U/kg dose of insulin reduced blood glucose levels for over 4 h, with bioactivity exceeding 100% relative to subcutaneous injection. Effects were reversible within 2 h and associated with actin and tight junction rearrangement. Furthermore, daily dosing of mice with pelargonidin for 1 mo resulted in no detectable side effects, including weight loss, tissue damage, or inflammatory responses. These data suggest that pelargonidin is an exceptionally effective enhancer of oral protein uptake that may be safe for routine pharmaceutical use.


Assuntos
Antocianinas , Fragaria , Absorção Intestinal , Intestinos , Proteínas , Administração Oral , Animais , Antocianinas/química , Antocianinas/farmacologia , Fragaria/química , Insulina/administração & dosagem , Insulina/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Camundongos , Permeabilidade , Proteínas/administração & dosagem , Proteínas/farmacocinética
3.
Small ; 19(19): e2207535, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807550

RESUMO

Activatable prodrugs have drawn considerable attention for cancer cell ablation owing to their high specificity in drug delivery systems. However, phototheranostic prodrugs with dual organelle-targeting and synergistic effects are still rare due to low intelligence of their structures. Besides, the cell membrane, exocytosis, and diffusional hindrance by the extracellular matrix reduce drug uptake. Moreover, the up-regulation of heat shock protein and short singlet-oxygen lifetime in cancer cells hamper photo-ablation efficacy, especially in the mono-therapeutic model. To overcome those obstacles, we prepare an esterase-activated DM nano-prodrug, which is conjugated by diiodine-substituted fluorogenic malachite green derivative (MG-2I) and phototherapeutic agent DPP-OH via hydrolyzable ester linkage, having pH-responsiveness and genetically targetable activity for dual organelles-targeting to optimize photo-ablation efficacy. The DM nanoparticles (NPs) present improved pH-responsive photothermal/photodynamic property by the protonation of diethylaminophenyl units in acidic environment. More importantly, the MG-2I and DPP-OH moieties can be released from DM nano-prodrug through overexpressed esterase; then specifically target lysosomes and mitochondria in CT-26 Mito-FAP cells. Hence, near-infrared DM NPs can trigger parallel damage in dual-organelles with strong fluorescence and effective phototoxicity, thus inducing serious mitochondrial dysfunction and apoptotic death, showing excellent photo-ablation effect based on esterase-activated, pH-responsive, and genetically targetable activities.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
4.
Proc Natl Acad Sci U S A ; 116(34): 17039-17044, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31383765

RESUMO

Synaptic release of neuropeptides packaged in dense-core vesicles (DCVs) regulates synapses, circuits, and behaviors including feeding, sleeping, and pain perception. Here, synaptic DCV fusion pore openings are imaged without interference from cotransmitting small synaptic vesicles (SSVs) with the use of a fluorogen-activating protein (FAP). Activity-evoked kiss and run exocytosis opens synaptic DCV fusion pores away from active zones that readily conduct molecules larger than most native neuropeptides (i.e., molecular weight [MW] up to, at least, 4.5 kDa). Remarkably, these synaptic fusion pores also open spontaneously in the absence of stimulation and extracellular Ca2+ SNARE perturbations demonstrate different mechanisms for activity-evoked and spontaneous fusion pore openings with the latter sharing features of spontaneous small molecule transmitter release by active zone-associated SSVs. Fusion pore opening at resting synapses provides a mechanism for activity-independent peptidergic transmission.


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Exocitose/fisiologia , Neuropeptídeos/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Neuropeptídeos/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Sinápticas/genética
5.
J Proteome Res ; 20(10): 4787-4800, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524823

RESUMO

Successful proteome analysis requires reliable sample preparation beginning with protein solubilization and ending with a sample free of contaminants, ready for downstream analysis. Most proteome sample preparation technologies utilize precipitation or filter-based separation, both of which have significant disadvantages. None of the current technologies are able to prepare both intact proteins or digested peptides. Here, we introduce a reversible protein tag, ProMTag, that enables whole proteome capture, cleanup, and release of intact proteins for top-down analysis. Alternatively, the addition of a novel Trypsin derivative to the workflow generates peptides for bottom-up analysis. We show that the ProMTag workflow yields >90% for intact proteins and >85% for proteome digests. For top-down analysis, ProMTag cleanup improves resolution on 2D gels; for bottom-up exploration, this methodology produced reproducible mass spectrometry results, demonstrating that the ProMTag method is a truly universal approach that produces high-quality proteome samples compatible with multiple downstream analytical techniques. Data are available via ProteomeXchange with identifier PXD027799.


Assuntos
Química Click , Proteômica , Química Click/métodos , Espectrometria de Massas , Peptídeos , Proteoma , Proteômica/métodos
6.
Environ Sci Technol ; 55(8): 4984-4991, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33709694

RESUMO

A contamination with the ubiquitous radioactive fission product 137Cs cannot be assigned per se to its source. We used environmental samples with varying contamination levels from various parts of the world to establish their characteristic 135Cs/137Cs isotope ratios and thereby allow their distinction. The samples included biological materials from Chernobyl and Fukushima, historic ashed human lung tissue from the 1960s from Austria, and trinitite from the Trinity Test Site, USA. After chemical separation and gas reaction shifts inside a triple quadrupole ICP mass spectrometer, characteristic 135Cs/137Cs isotope signatures (all as per March 11, 2011) were obtained for Fukushima- (∼0.35) and Chernobyl-derived (∼0.50) contaminations, in agreement with the literature for these contamination sources. Both signatures clearly distinguish from the characteristic high ratio (1.9 ± 0.2) for nuclear-weapon-produced radiocesium found in human lung tissue. Trinitite samples exhibited an unexpected, anomalous pattern by displaying a low (<0.4) and nonuniform 135Cs/137Cs ratio. This exemplifies a 137Cs-rich fractionation of the plume in a nuclear explosion, where 137Cs is a predominant species in the fireball. The onset of 135Cs was delayed because of the longer half-life of its parent nuclide 135Xe, causing a spatial separation of gaseous 135Xe from condensed 137Cs, which is the reason for the atypical 135Cs/137Cs fractionation in the fallout at the test site.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Áustria , Radioisótopos de Césio/análise , Humanos , Japão , Poluentes Radioativos do Solo/análise
7.
Nucleic Acids Res ; 46(7): 3742-3752, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29394378

RESUMO

Paraspeckles are nuclear bodies that regulate multiple aspects of gene expression. The long non-coding RNA (lncRNA) NEAT1 is essential for paraspeckle formation. NEAT1 has a highly ordered spatial organization within the paraspeckle, such that its 5' and 3' ends localize on the periphery of paraspeckle, while central sequences of NEAT1 are found within the paraspeckle core. As such, the structure of NEAT1 RNA may be important as a scaffold for the paraspeckle. In this study, we used SHAPE probing and computational analyses to investigate the secondary structure of human and mouse NEAT1. We propose a secondary structural model of the shorter (3,735 nt) isoform hNEAT1_S, in which the RNA folds into four separate domains. The secondary structures of mouse and human NEAT1 are largely different, with the exception of several short regions that have high structural similarity. Long-range base-pairing interactions between the 5' and 3' ends of the long isoform NEAT1 (NEAT1_L) were predicted computationally and verified using an in vitro RNA-RNA interaction assay. These results suggest that the conserved role of NEAT1 as a paraspeckle scaffold does not require extensively conserved RNA secondary structure and that long-range interactions among NEAT1 transcripts may have an important architectural function in paraspeckle formation.


Assuntos
Núcleo Celular/genética , Conformação de Ácido Nucleico , RNA Longo não Codificante/genética , RNA/genética , Animais , Núcleo Celular/química , Células HeLa , Humanos , Camundongos , RNA/química , RNA Longo não Codificante/química
8.
J Cell Sci ; 130(22): 3933-3945, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29025969

RESUMO

Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABAAR) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABAAR γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2pHFAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2pHFAP GABAARs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2pHFAP GABAARs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2pHFAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2pHFAP-MG dye approach reveals enhanced GABAAR turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABAAR trafficking.


Assuntos
Receptores de GABA-A/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Lisossomos/metabolismo , Microscopia de Fluorescência , Neurônios/metabolismo , Transporte Proteico , Ratos Sprague-Dawley , Análise de Célula Única
9.
Eur Arch Psychiatry Clin Neurosci ; 269(5): 587-598, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30288559

RESUMO

Given the particular relevance of arousal and alerting in panic disorder (PD), here the alerting network was investigated (1) contrasting patients with PD and healthy controls, (2) as a function of anxiety sensitivity constituting a dimensional measure of panic-related anxiety, and (3) as a possible correlate of treatment response. Using functional magnetic resonance imaging (fMRI), 45 out-patients with PD (f = 34) and 51 matched healthy controls were investigated for brain activation patterns and effective connectivity (Dynamic Causal Modeling, DCM) while performing the Attention Network Task (ANT). Anxiety sensitivity was ascertained by the Anxiety Sensitivity Index (ASI). Forty patients and 48 controls were re-scanned after a 6 weeks cognitive-behavioral treatment (CBT) or an equivalent waiting time, respectively. In the alerting condition, patients showed decreased activation in fronto-parietal pathways including the middle frontal gyrus and the superior parietal lobule (MFG, SPL). In addition, ASI scores were negatively correlated with connectivity emerging from the SPL, the SFB and the LC and going to the MFG in patients but not in healthy controls. CBT resulted in an increase in middle frontal and parietal activation along with increased connectivity going from the MFG to the SPL. This change in connectivity was positively correlated with reduction in ASI scores. There were no changes in controls. The present findings point to a pathological disintegration of the MFG in a fronto-parietal pathway in the alerting network in PD which was observed to be reversible by a successful CBT intervention.


Assuntos
Atenção/fisiologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Transtorno de Pânico/terapia , Adulto , Encéfalo/fisiopatologia , Terapia Cognitivo-Comportamental , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Transtorno de Pânico/diagnóstico por imagem , Transtorno de Pânico/fisiopatologia , Adulto Jovem
10.
J Neurosci ; 37(14): 3741-3752, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28264976

RESUMO

The δ opioid receptor (δR) is a promising alternate target for pain management because δR agonists show decreased abuse potential compared with current opioid analgesics that target the µ opioid receptor. A critical limitation in developing δR as an analgesic target, however, is that δR agonists show relatively low efficacy in vivo, requiring the use of high doses that often cause adverse effects, such as convulsions. Here we tested whether intracellular retention of δR in sensory neurons contributes to this low δR agonist efficacy in vivo by limiting surface δR expression. Using direct visualization of δR trafficking and localization, we define a phosphatase and tensin homolog (PTEN)-regulated checkpoint that retains δR in the Golgi and decreases surface delivery in rat and mice sensory neurons. PTEN inhibition releases δR from this checkpoint and stimulates delivery of exogenous and endogenous δR to the neuronal surface both in vitro and in vivo PTEN inhibition in vivo increases the percentage of TG neurons expressing δR on the surface and allows efficient δR-mediated antihyperalgesia in mice. Together, we define a critical role for PTEN in regulating the surface delivery and bioavailability of the δR, explain the low efficacy of δR agonists in vivo, and provide evidence that active δR relocation is a viable strategy to increase δR antinociception.SIGNIFICANCE STATEMENT Opioid analgesics, such as morphine, which target the µ opioid receptor (µR), have been the mainstay of pain management, but their use is highly limited by adverse effects and their variable efficacy in chronic pain. Identifying alternate analgesic targets is therefore of great significance. Although the δ opioid receptor (δR) is an attractive option, a critical limiting factor in developing δR as a target has been the low efficacy of δR agonists. Why δR agonists show low efficacy is still under debate. This study provides mechanistic and functional data that intracellular localization of δR in neurons is a key factor that contributes to low agonist efficacy, and presents a proof of mechanism that relocating δR improves efficacy.


Assuntos
Membrana Celular/metabolismo , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Receptores Opioides delta/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Células PC12 , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fenantrenos/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
11.
Biochemistry ; 57(5): 861-871, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29283245

RESUMO

Fluorescent protein-based pH sensors are useful tools for measuring protein trafficking through pH changes associated with endo- and exocytosis. However, commonly used pH-sensing probes are ubiquitously expressed with their protein of interest throughout the cell, hindering our ability to focus on specific trafficking pools of proteins. We developed a family of excitation ratiometric, activatable pH responsive tandem dyes, consisting of a pH sensitive Cy3 donor linked to a fluorogenic malachite green acceptor. These cell-excluded dyes are targeted and activated upon binding to a genetically expressed fluorogen-activating protein and are suitable for selective labeling of surface proteins for analysis of endocytosis and recycling in live cells using both confocal and superresolution microscopy. Quantitative profiling of the endocytosis and recycling of tagged ß2-adrenergic receptor (B2AR) at a single-vesicle level revealed differences among B2AR agonists, consistent with more detailed pharmacological profiling.


Assuntos
Carbocianinas/análise , Corantes/análise , Endocitose/fisiologia , Exocitose/fisiologia , Corantes Fluorescentes/análise , Transporte Proteico/fisiologia , Corantes de Rosanilina/análise , Anticorpos de Cadeia Única/análise , Endossomos/metabolismo , Endossomos/ultraestrutura , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/análise , Microscopia Confocal , Receptores Adrenérgicos beta 2/metabolismo
12.
Mol Pharm ; 15(3): 759-767, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29384380

RESUMO

The most promising F508del-CFTR corrector, VX-809, has been unsuccessful as an effective, stand-alone treatment for CF patients, but the rescue effect in combination with other drugs may confer an acceptable level of therapeutic benefit. Targeting cellular factors that modify trafficking may act to enhance the cell surface density of F508-CFTR with VX-809 correction. Our goal is to identify druggable kinases that enhance F508del-CFTR rescue and stabilization at the cell surface beyond that achievable with the VX-809 corrector alone. To achieve this goal, we implemented a new high-throughput screening paradigm that quickly and quantitatively measures surface density and total protein in the same cells. This allowed for rapid screening for increased surface targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein (FAP) technology with cell excluded and cell permeant fluorogenic dyes in a quick, wash-free fluorescent plate reader format on live cells to first measure F508del-CFTR expressed on the surface and then the total amount of F508del-CFTR protein present. To screen for kinase targets, we used Dharmacon's ON-TARGET plus SMARTpool siRNA Kinase library (715 target kinases) with and without 10 µM VX-809 treatment in triplicate at 37 °C. We identified several targets that had a significant interaction with VX-809 treatment in enhancing surface density with siRNA knockdown. Select small-molecule inhibitors of the kinase targets demonstrated augmented surface expression with VX-809 treatment.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Fosfotransferases/genética , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Membrana Celular/metabolismo , Fibrose Cística/genética , Fibrose Cística/terapia , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Citometria de Fluxo , Corantes Fluorescentes/química , Técnicas de Silenciamento de Genes/métodos , Células HEK293 , Humanos , Mutação , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , RNA Interferente Pequeno/metabolismo , Resultado do Tratamento
13.
Bioconjug Chem ; 28(5): 1356-1362, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28414915

RESUMO

We describe proof-of-concept for a novel approach for visualizing regions of close apposition between the surfaces of living cells. A membrane-anchored protein with high affinity for a chemical ligand is expressed on the surface of one set of cells, and the cells are co-cultured with a second set of cells that express a membrane-anchored fluorogen-activating protein (FAP). The co-cultured cells are incubated with a bivalent reagent composed of fluorogen linked to the high-affinity ligand, with the concentration of the bivalent reagent chosen to be less than the binding constant for the FAP-fluorogen pair but greater than the binding constant for the ligand-high-affinity protein pair. In these conditions, strong FAP signal is observed only in regions of close proximity between membranes of the two classes of cell, where high local concentration of fluorogen favors binding to the FAP.


Assuntos
Anticorpos Monoclonais/metabolismo , Bioensaio/métodos , Técnicas Biossensoriais/métodos , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Ligação Proteica
14.
Biochim Biophys Acta ; 1854(6): 592-600, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25466873

RESUMO

Immunoprecipitation (IP) is a widely used technique for identifying the binding partners of the target proteins of specific antibodies. Putative binding targets and their partners are usually in much lower amounts than the antibodies used to capture these target proteins. Thus antigen identification using proteomics following IP is often confounded by the presence of an overwhelming amount of interfering antibody protein. Even covalently linking antibodies to beads is susceptible to antibody leaching during IP. To circumvent this interference, we describe here a reagent, called Biotin-CDM that reversibly tags all potential target proteins in a cell lysate with biotin. The presence of biotin coupled to the target proteins allows for a secondary separation step in which antibodies are washed away from the reversibly biotinylated target proteins by binding them to an Avidin-coupled matrix. The captured target proteins are released from the Avidin matrix by reversing the Biotin-CDM link, thus releasing a pool of target proteins ready for further proteomic analysis compatible with 2D-electrophoresis. Here, we describe the synthesis and characterization of Biotin-CDM. We also demonstrate Biotin-CDM's use for immunoprecipitation of a known antigen, as well as its use for capturing an array of proteins targeted by the autoantibodies found in the serum a patient suffering from rheumatoid arthritis. The use of this reagent allows one to combine immunoprecipitation and 2D-Difference gel electrophoresis, overcoming the current limitations of Serological Proteome Analysis (SERPA) in discovering autoantigens. This article is part of a Special Issue entitled: Medical Proteomics.


Assuntos
Artrite Reumatoide/sangue , Autoanticorpos/química , Autoantígenos/sangue , Imunoprecipitação/métodos , Proteômica/métodos , Avidina/química , Biotina/química , Células HeLa , Humanos
15.
Hum Brain Mapp ; 37(3): 1091-102, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26678871

RESUMO

Several lines of evidence suggest that the amygdala and the bed nucleus of the stria terminalis (BNST) are differentially involved in phasic and sustained fear. Even though, results from neuroimaging studies support this distinction, a specific effect of a temporal dissociation with phasic responses to onset versus sustained responses during prolonged states of threat anticipation has not been shown yet. To explore this issue, we investigated brain activation during anticipation of threat in 38 healthy participants by means of functional magnetic resonance imaging. Participants were presented different visual cues indicated the temporally unpredictable occurrence of a subsequent aversive or neutral stimulus. During the onset of aversive versus neutral anticipatory cues, results showed a differential phasic activation of amygdala, anterior cingulate cortex (ACC), and ventrolateral prefrontal cortex (PFC). In contrast, activation in the BNST and other brain regions, including insula, dorsolateral PFC, ACC, cuneus, posterior cingulate cortex, and periaqueductal grey was characterized by a sustained response during the threat versus neutral anticipation period. Analyses of functional connectivity showed phasic amygdala response as positively associated with activation, mainly in sensory cortex areas whereas sustained BNST activation was negatively associated with activation in visual cortex and positively correlated with activation in the insula and thalamus. These findings suggest that the amygdala is responsive to the onset of cues signaling the unpredictable occurrence of a potential threat while the BNST in concert with other areas is involved in sustained anxiety. Furthermore, the amygdala and BNST are characterized by distinctive connectivity patterns during threat anticipation.


Assuntos
Tonsila do Cerebelo/fisiologia , Antecipação Psicológica/fisiologia , Medo/fisiologia , Núcleos Septais/fisiologia , Adulto , Mapeamento Encefálico , Sinais (Psicologia) , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Testes Neuropsicológicos , Periodicidade , Estimulação Luminosa , Percepção Visual/fisiologia
16.
Bioconjug Chem ; 27(6): 1525-31, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27159569

RESUMO

Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics.


Assuntos
Corantes Fluorescentes/química , Espaço Intracelular/química , Proteínas/química , Corantes de Rosanilina/química , Sobrevivência Celular , Células HEK293 , Humanos , Propriedades de Superfície
17.
J Neural Transm (Vienna) ; 123(8): 895-904, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27145764

RESUMO

Environmental vulnerability factors such as adverse childhood experiences in interaction with genetic risk variants, e.g., the serotonin transporter gene linked polymorphic region (5-HTTLPR), are assumed to play a role in the development of anxiety and affective disorders. However, positive influences such as general self-efficacy (GSE) may exert a compensatory effect on genetic disposition, environmental adversity, and anxiety traits. We, thus, assessed childhood trauma (Childhood Trauma Questionnaire, CTQ) and GSE in 678 adults genotyped for 5-HTTLPR/rs25531 and their interaction on agoraphobic cognitions (Agoraphobic Cognitions Questionnaire, ACQ), social anxiety (Liebowitz Social Anxiety Scale, LSAS), and trait anxiety (State-Trait Anxiety Inventory, STAI-T). The relationship between anxiety traits and childhood trauma was moderated by self-efficacy in 5-HTTLPR/rs25531 LALA genotype carriers: LALA probands maltreated as children showed high anxiety scores when self-efficacy was low, but low anxiety scores in the presence of high self-efficacy despite childhood maltreatment. Our results extend previous findings regarding anxiety-related traits showing an interactive relationship between 5-HTT genotype and adverse childhood experiences by suggesting coping-related measures to function as an additional dimension buffering the effects of a gene-environment risk constellation. Given that anxiety disorders manifest already early in childhood, this insight could contribute to the improvement of psychotherapeutic interventions by including measures strengthening self-efficacy and inform early targeted preventive interventions in at-risk populations, particularly within the crucial time window of childhood and adolescence.


Assuntos
Ansiedade/psicologia , Maus-Tratos Infantis/psicologia , Interação Gene-Ambiente , Autoeficácia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto , Ansiedade/etiologia , Ansiedade/genética , Criança , Feminino , Genótipo , Humanos , Masculino , Escalas de Graduação Psiquiátrica , Análise de Regressão , Inquéritos e Questionários , Adulto Jovem
18.
Bioconjug Chem ; 26(1): 137-44, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25490520

RESUMO

Fluorescence is essential for dynamic live cell imaging, and affinity reagents are required for quantification of endogenous proteins. Various fluorescent dyes can report on different aspects of biological trafficking, but must be independently conjugated to affinity reagents and characterized for specific biological readouts. Here we present the characterization of a new modular platform for small anti-EGFR affinity probes for studying rapid changes in receptor pools. A protein domain (FAP dL5**) that binds to malachite-green (MG) derivatives for fluorescence activation was expressed as a recombinant fusion to one or two copies of the compact EGFR binding affibody ZEGFR:1907. This is a recombinant and fluorogenic labeling reagent for native EGFR molecules. In vitro fluorescence assays demonstrated that the binding of these dyes to the FAP-affibody fusions produced thousand-fold fluorescence enhancements, with high binding affinity and fast association rates. Flow cytometry assays and fluorescence microscopy demonstrated that these probes label endogenous EGFR on A431 cells without disruption of EGFR function, and low nanomolar surface Kd values were observed with the double-ZEGFR:1907 constructs. The application of light-harvesting fluorogens (dyedrons) significantly improved the detected fluorescence signal. Altering the order of addition of the ligand, probe, and dyes allowed differentiation between surface and endocytotic pools of receptors to reveal the rapid dynamics of endocytic trafficking. Therefore, FAP/affibody coupling provides a new approach to construct compact and modular affinity probes that label endogenous proteins on living cells and can be used for studying rapid changes in receptor pools involved in trafficking.


Assuntos
Receptores ErbB/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/imunologia , Corantes Fluorescentes/química , Humanos , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia
19.
Org Biomol Chem ; 13(7): 2078-86, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25520058

RESUMO

Agonist-promoted G-protein coupled receptor (GPCR) endocytosis and recycling plays an important role in many signaling events in the cell. However, the approaches that allow fast and quantitative analysis of such processes still remain limited. Here we report an improved labeling approach based on the genetic fusion of a fluorogen activating protein (FAP) to a GPCR and binding of a sulfonated analog of the malachite green (MG) fluorogen to rapidly and selectively label cell surface receptors. Fluorescence microscopy and flow cytometry demonstrate that this dye does not cross the plasma membrane, binds with high affinity to a dL5** FAP-GPCR fusion construct, activating tagged surface receptors within seconds of addition. The ability to rapidly and selectively label cell surface receptors with a fluorogenic genetically encoded tag allows quantitative imaging and analysis of highly dynamic processes like receptor endocytosis and recycling.


Assuntos
Corantes Fluorescentes/química , Metano/química , Proteínas/química , Receptores Acoplados a Proteínas G/química , Células Cultivadas , Citometria de Fluxo , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Proteínas/genética , Propriedades de Superfície
20.
Org Biomol Chem ; 13(12): 3699-710, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25679477

RESUMO

Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields.


Assuntos
Corantes Fluorescentes/química , Luz , Proteínas/metabolismo , Benzotiazóis/química , Cumarínicos/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Microscopia Confocal , Quinolinas/química , Saccharomyces cerevisiae/citologia , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA