RESUMO
Embryogenesis necessitates harmonious coordination between embryonic and extraembryonic tissues. Although stem cells of both embryonic and extraembryonic origins have been generated, they are grown in different culture conditions. In this study, utilizing a unified culture condition that activates the FGF, TGF-ß, and WNT pathways, we have successfully derived embryonic stem cells (FTW-ESCs), extraembryonic endoderm stem cells (FTW-XENs), and trophoblast stem cells (FTW-TSCs) from the three foundational tissues of mouse and cynomolgus monkey (Macaca fascicularis) blastocysts. This approach facilitates the co-culture of embryonic and extraembryonic stem cells, revealing a growth inhibition effect exerted by extraembryonic endoderm cells on pluripotent cells, partially through extracellular matrix signaling. Additionally, our cross-species analysis identified both shared and unique transcription factors and pathways regulating FTW-XENs. The embryonic and extraembryonic stem cell co-culture strategy offers promising avenues for developing more faithful embryo models and devising more developmentally pertinent differentiation protocols.
Assuntos
Embrião de Mamíferos , Células-Tronco Embrionárias , Animais , Técnicas de Cocultura , Macaca fascicularis , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Endoderma/metabolismo , Linhagem da CélulaRESUMO
Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.
Assuntos
Gastrulação , Macaca fascicularis , Organogênese , Análise de Célula Única , Animais , Humanos , Camundongos , Gastrulação/genética , Macaca fascicularis/embriologia , Macaca fascicularis/genética , Organogênese/genética , Corpos Embrioides , Perfilação da Expressão Gênica , Linha Primitiva/citologia , Linha Primitiva/embriologia , Tubo Neural/citologia , Tubo Neural/embriologia , Crista Neural/citologia , Crista Neural/embriologia , Via de Sinalização Hippo , Mesoderma/citologia , Mesoderma/embriologia , Células-TroncoRESUMO
Limited access to embryos has hampered the study of human embryogenesis and disorders that occur during early pregnancy. Human pluripotent stem cells provide an alternative means to study human development in a dish1-7. Recent advances in partial embryo models derived from human pluripotent stem cells have enabled human development to be examined at early post-implantation stages8-14. However, models of the pre-implantation human blastocyst are lacking. Starting from naive human pluripotent stem cells, here we developed an effective three-dimensional culture strategy with successive lineage differentiation and self-organization to generate blastocyst-like structures in vitro. These structures-which we term 'human blastoids'-resemble human blastocysts in terms of their morphology, size, cell number, and composition and allocation of different cell lineages. Single-cell RNA-sequencing analyses also reveal the transcriptomic similarity of blastoids to blastocysts. Human blastoids are amenable to embryonic and extra-embryonic stem cell derivation and can further develop into peri-implantation embryo-like structures in vitro. Using chemical perturbations, we show that specific isozymes of protein kinase C have a critical function in the formation of the blastoid cavity. Human blastoids provide a readily accessible, scalable, versatile and perturbable alternative to blastocysts for studying early human development, understanding early pregnancy loss and gaining insights into early developmental defects.
Assuntos
Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/citologia , Blastocisto/enzimologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/enzimologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Isoenzimas/metabolismo , Células-Tronco Pluripotentes/enzimologia , Células-Tronco Pluripotentes/metabolismo , Proteína Quinase C/metabolismo , Análise de Célula Única , TranscriptomaRESUMO
The seamless transition through stages of pluripotency relies on a balance between transcription factor networks and epigenetic mechanisms. Here, we reveal the crucial role of the transgene activation suppressor (TASOR), a component of the human silencing hub (HUSH) complex, in maintaining cell viability during the transition from naive to primed pluripotency. TASOR loss in naive pluripotent stem cells (PSCs) triggers replication stress, disrupts H3K9me3 heterochromatin, and impairs silencing of LINE-1 (L1) transposable elements, with more severe effects in primed PSCs. Notably, the survival of Tasor knockout PSCs during this transition can be restored by inhibiting caspase or deleting the mitochondrial antiviral signaling protein (MAVS). This suggests that unscheduled L1 expression activates an innate immune response, leading to cell death specifically in cells exiting naive pluripotency. Our findings highlight the importance of epigenetic programs established in naive pluripotency for normal development.
RESUMO
Many neurodevelopmental defects are linked to perturbations in genes involved in housekeeping functions, such as those encoding ribosome biogenesis factors. However, how reductions in ribosome biogenesis can result in tissue and developmental specific defects remains a mystery. Here we describe new allelic variants in the ribosome biogenesis factor AIRIM primarily associated with neurodevelopmental disorders. Using human cerebral organoids in combination with proteomic analysis, single-cell transcriptome analysis across multiple developmental stages, and single organoid translatome analysis, we identify a previously unappreciated mechanism linking changes in ribosome levels and the timing of cell fate specification during early brain development. We find ribosome levels decrease during neuroepithelial differentiation, making differentiating cells particularly vulnerable to perturbations in ribosome biogenesis during this time. Reduced ribosome availability more profoundly impacts the translation of specific transcripts, disrupting both survival and cell fate commitment of transitioning neuroepithelia. Enhancing mTOR activity by both genetic and pharmacologic approaches ameliorates the growth and developmental defects associated with intellectual disability linked variants, identifying potential treatment options for specific brain ribosomopathies. This work reveals the cellular and molecular origins of protein synthesis defect-related disorders of human brain development. Highlights: AIRIM variants reduce ribosome levels specifically in neural progenitor cells. Inappropriately low ribosome levels cause a transient delay in radial glia fate commitment.Reduced ribosome levels impair translation of a selected subset of mRNAs.Genetic and pharmacologic activation of mTORC1 suppresses AIRIM-linked phenotypes.
RESUMO
Faithful embryogenesis requires precise coordination between embryonic and extraembryonic tissues. Although stem cells from embryonic and extraembryonic origins have been generated for several mammalian species(Bogliotti et al., 2018; Choi et al., 2019; Cui et al., 2019; Evans and Kaufman, 1981; Kunath et al., 2005; Li et al., 2008; Martin, 1981; Okae et al., 2018; Tanaka et al., 1998; Thomson et al., 1998; Vandevoort et al., 2007; Vilarino et al., 2020; Yu et al., 2021b; Zhong et al., 2018), they are grown in different culture conditions with diverse media composition, which makes it difficult to study cross-lineage communication. Here, by using the same culture condition that activates FGF, TGF-ß and WNT signaling pathways, we derived stable embryonic stem cells (ESCs), extraembryonic endoderm stem cells (XENs) and trophoblast stem cells (TSCs) from all three founding tissues of mouse and cynomolgus monkey blastocysts. This allowed us to establish embryonic and extraembryonic stem cell co-cultures to dissect lineage crosstalk during early mammalian development. Co-cultures of ESCs and XENs uncovered a conserved and previously unrecognized growth inhibition of pluripotent cells by extraembryonic endoderm cells, which is in part mediated through extracellular matrix signaling. Our study unveils a more universal state of stem cell self-renewal stabilized by activation, as opposed to inhibition, of developmental signaling pathways. The embryonic and extraembryonic stem cell co-culture strategy developed here will open new avenues for creating more faithful embryo models and developing more developmentally relevant differentiation protocols.
RESUMO
Although features of ribosome assembly are shared between species, our understanding of the diversity, complexity, dynamics, and regulation of ribosome production in multicellular organisms remains incomplete. To gain insights into ribosome biogenesis in human cells, we perform a genome-wide loss-of-function screen combined with differential labeling of pre-existing and newly assembled ribosomes. These efforts identify two functionally uncharacterized genes, C1orf109 and SPATA5. We provide evidence that these factors, together with CINP and SPATA5L1, control a late step of human pre-60S maturation in the cytoplasm. Loss of either C1orf109 or SPATA5 impairs global protein synthesis. These results link ribosome assembly with neurodevelopmental disorders associated with recessive SPATA5 mutations. Based on these findings, we propose that the expanded repertoire of ribosome biogenesis factors likely enables multicellular organisms to coordinate multiple steps of ribosome production in response to different developmental and environmental stimuli.
Assuntos
Biossíntese de Proteínas , Ribossomos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Humanos , Fosfoproteínas/metabolismo , Ribossomos/metabolismoRESUMO
Dynamic pluripotent stem cell (PSC) states are in vitro adaptations of pluripotency continuum in vivo. Previous studies have generated a number of PSCs with distinct properties. To date, however, no known PSCs have demonstrated dual competency for chimera formation and direct responsiveness to primordial germ cell (PGC) specification, a unique functional feature of formative pluripotency. Here, by modulating fibroblast growth factor (FGF), transforming growth factor ß (TGF-ß), and WNT pathways, we derived PSCs from mice, horses, and humans (designated as XPSCs) that are permissive for direct PGC-like cell induction in vitro and are capable of contributing to intra- or inter-species chimeras in vivo. XPSCs represent a pluripotency state between naive and primed pluripotency and harbor molecular, cellular, and phenotypic features characteristic of formative pluripotency. XPSCs open new avenues for studying mammalian pluripotency and dissecting the molecular mechanisms governing PGC specification. Our method may be broadly applicable for the derivation of analogous stem cells from other mammalian species.