Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 19(29): e2300098, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026674

RESUMO

Ultrathin MoS2 has shown remarkable characteristics at the atomic scale with an immutable disorder to weak external stimuli. Ion beam modification unlocks the potential to selectively tune the size, concentration, and morphology of defects produced at the site of impact in 2D materials. Combining experiments, first-principles calculations, atomistic simulations, and transfer learning, it is shown that irradiation-induced defects can induce a rotation-dependent moiré pattern in vertically stacked homobilayers of MoS2 by deforming the atomically thin material and exciting surface acoustic waves (SAWs). Additionally, the direct correlation between stress and lattice disorder by probing the intrinsic defects and atomic environments are demonstrated. The method introduced in this paper sheds light on how engineering defects in the lattice can be used to tailor the angular mismatch in van der Waals (vdW) solids.

5.
Materials (Basel) ; 17(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38399150

RESUMO

Graphite IG-110 is a synthetic polycrystalline material used as a neutron moderator in reactors. Graphite is inherently brittle and is known to exhibit a further increase in brittleness due to radiation damage at room temperature. To understand the irradiation effects on pre-existing defects and their overall influence on external load, micropillar compression tests were performed using in situ nanoindentation in the Transmission Electron Microscopy (TEM) for both pristine and ion-irradiated samples. While pristine specimens showed brittle and subsequent catastrophic failure, the 2.8 MeV Au2+ ion (fluence of 4.378 × 1014 cm-2) irradiated specimens sustained extensive plasticity at room temperature without failure. In situ TEM characterization showed nucleation of nanoscale kink band structures at numerous sites, where the localized plasticity appeared to close the defects and cracks while allowing large average strain. We propose that compressive mechanical stress due to dimensional change during ion irradiation transforms buckled basal layers in graphite into kink bands. The externally applied load during the micropillar tests proliferates the nucleation and motion of kink bands to accommodate the large plastic strain. The inherent non-uniformity of graphite microstructure promotes such strain localization, making kink bands the predominant mechanism behind unprecedented toughness in an otherwise brittle material.

6.
Materials (Basel) ; 15(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35888322

RESUMO

The properties of oxide dispersion-strengthened steels are highly dependent on the nature and size distribution of their constituting nano-oxide precipitates. A fine control of the processes of synthesis would enable the optimization of pertinent properties for use in various energy systems. This control, however, requires knowledge of the precise mechanisms of nucleation and growth of the nanoprecipitates, which are still a matter of debate. In the present study, nano-oxide precipitates were produced via the implantation of Y, Ti, and O ions in two different sequential orders in an Fe-10%Cr matrix that was subsequently thermally annealed. The results show that the oxides that precipitate are not necessarily favoured thermodynamically, but rather result from complex kinetics aspects related to the interaction between the implanted elements and induced defects. When Y is implanted first, the formation of nanoprecipitates with characteristics similar to those in conventionally produced ODS steels, especially with a core/shell structure, is evidenced. In contrast, when implantation starts with Ti, the precipitation of yttria during subsequent high-temperature annealing is totally suppressed, and corundum Cr2O3 precipitates instead. Moreover, the systematic involvement of {110} matrix planes in orientation relationships with the precipitates, independently of the precipitate nature, suggests matrix restriction effects on the early stages of precipitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA