Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Histochem Cell Biol ; 161(6): 521-537, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530407

RESUMO

Key reproductive events such as fertilization and early embryonic development occur in the lumen of the oviduct. Since investigating these processes in vivo is both technically challenging and ethically sensitive, cell culture models have been established to reproduce the oviductal microenvironment. Compartmentalized culture systems, particularly air-liquid interface cultures (ALI; cells access the culture medium only from the basolateral cell side), result in highly differentiated oviduct epithelial cell cultures. The oxygen (O2) tension within the oviduct is 4-10% across species, and its reduced O2 content is presumed to be important for early reproductive processes. However, cell culture models of the oviduct are typically cultivated without O2 regulation and therefore at about 18% O2. To investigate the impact of O2 levels on oviduct epithelium functions in vitro, we cultured porcine oviduct epithelial cells (POEC) at the ALI using both physiological (5%) and supraphysiological (18%) O2 levels and two different media regimes. Epithelium architecture, barrier function, secretion of oviduct fluid surrogate (OFS), and marker gene expression were comparatively assessed. Under all culture conditions, ALI-POEC formed polarized, ciliated monolayers with appropriate barrier function. Exposure to 18% O2 accelerated epithelial differentiation and significantly increased the apical OFS volume and total protein content. Expression of oviduct genes and the abundance of OVGP1 (oviduct-specific glycoprotein 1) in the OFS were influenced by both O2 tension and medium choice. In conclusion, oviduct epithelial cells can adapt to a supraphysiological O2 environment. This adaptation, however, may alter their capability to replicate in vivo tissue characteristics.


Assuntos
Oviductos , Oxigênio , Animais , Feminino , Oxigênio/metabolismo , Suínos , Oviductos/metabolismo , Oviductos/citologia , Células Cultivadas , Epitélio/metabolismo , Técnicas de Cultura de Células , Células Epiteliais/metabolismo , Células Epiteliais/citologia
2.
BMC Biol ; 20(1): 52, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189878

RESUMO

BACKGROUND: Long-term selection experiments are a powerful tool to understand the genetic background of complex traits. The longest of such experiments has been conducted in the Research Institute for Farm Animal Biology (FBN), generating extreme mouse lines with increased fertility, body mass, protein mass and endurance. For >140 generations, these lines have been maintained alongside an unselected control line, representing a valuable resource for understanding the genetic basis of polygenic traits. However, their history and genomes have not been reported in a comprehensive manner yet. Therefore, the aim of this study is to provide a summary of the breeding history and phenotypic traits of these lines along with their genomic characteristics. We further attempt to decipher the effects of the observed line-specific patterns of genetic variation on each of the selected traits. RESULTS: Over the course of >140 generations, selection on the control line has given rise to two extremely fertile lines (>20 pups per litter each), two giant growth lines (one lean, one obese) and one long-distance running line. Whole genome sequencing analysis on 25 animals per line revealed line-specific patterns of genetic variation among lines, as well as high levels of homozygosity within lines. This high degree of distinctiveness results from the combined effects of long-term continuous selection, genetic drift, population bottleneck and isolation. Detection of line-specific patterns of genetic differentiation and structural variation revealed multiple candidate genes behind the improvement of the selected traits. CONCLUSIONS: The genomes of the Dummerstorf trait-selected mouse lines display distinct patterns of genomic variation harbouring multiple trait-relevant genes. Low levels of within-line genetic diversity indicate that many of the beneficial alleles have arrived to fixation alongside with neutral alleles. This study represents the first step in deciphering the influence of selection and neutral evolutionary forces on the genomes of these extreme mouse lines and depicts the genetic complexity underlying polygenic traits.


Assuntos
Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Genômica , Camundongos , Fenótipo , Seleção Genética
3.
Biol Reprod ; 105(2): 317-331, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34057175

RESUMO

In vitro fertilization (IVF) gives rise to embryos in a number of mammalian species and is currently widely used for assisted reproduction in humans and for genetic purposes in cattle. However, the rate of polyspermy is generally higher in vitro than in vivo and IVF remains ineffective in some domestic species like pigs and horses, highlighting the importance of the female reproductive tract for gamete quality and fertilization. In this review, the way the female environment modulates sperm selective migration, survival, and acquisition of fertilizing ability in the oviduct is being considered under six aspects: (1) the utero-tubal junction that selects a sperm sub-population entering the oviduct; (2) the presence of sperm binding sites on luminal epithelial cells in the oviduct, which prolong sperm viability and plays a role in limiting polyspermic fertilization; (3) the contractions of the oviduct, which promote sperm migration toward the site of fertilization in the ampulla; (4) the regions of the oviduct, which play different roles in regulating sperm physiology and interactions with oviduct epithelial cells; (5) the time of ovulation, and (6) the steroid hormonal environment which regulates sperm release from the luminal epithelial cells and facilitates capacitation in a finely orchestrated manner.


Assuntos
Movimento Celular , Sobrevivência Celular , Fertilização , Oviductos/fisiologia , Espermatozoides/fisiologia , Animais , Feminino , Humanos , Masculino , Mamíferos
4.
Reproduction ; 162(4): 259-266, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34320465

RESUMO

After fertilization, the oocyte-specific metalloproteinase ovastacin is released and cleaves the zona pellucida protein 2 (ZP2), making the zona pellucida impermeable to sperm. Before fertilization, the zona remains permeable because previously released ovastacin is inhibited by fetuin-B. Consequently, in the absence of fetuin-B, ZP2 cleavage occurs prematurely and leads to infertility of female fetuin-B deficient mice. In contrast, fetuin-B/ovastacin double-deficient oocytes show a permanently permeable zona with intact ZP2. In this study, we asked if the elastic modulus of the zona pellucida informs about ZP2 cleavage and thus could serve as a new reference of oocyte fertility. Therefore, we determined the elastic modulus of mouse oocytes by nanoindentation as a direct measure of mechanical zona hardening. The elastic modulus reflects ZP2 cleavage, but with more than double sensitivity compared to immunoblot analysis. The elastic modulus measurement allowed to define the range of zona hardening, confined by the extreme states of the zona pellucida in fetuin-B and ovastacin-deficient oocytes with cleaved and uncleaved ZP2, respectively. We present here nanoindentation as a method to quantify the effect of potential contributing factors on the zona hardening of individual oocytes. To demonstrate this, we showed that mechanical hardening of the zona pellucida is forced by recombinant ovastacin, inhibited by additional administration of fetuin-B, and unaffected by zinc. Since the change in elastic modulus is induced by ZP2 cleavage, an automated elastic modulus measurement of oocytes may serve as a novel sensitive, non-destructive, marker-free, and observer-unbiased method for assessing individual oocyte quality.


Assuntos
Oócitos , Zona Pelúcida , Animais , Feminino , Fetuína-B/metabolismo , Fetuína-B/farmacologia , Masculino , Camundongos , Oócitos/metabolismo , Espermatozoides/metabolismo , Glicoproteínas da Zona Pelúcida/metabolismo
5.
Reproduction ; 159(4): 371-382, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31990667

RESUMO

In mammals, around the time of ovulation, the hormonal profile dynamically changes in synchrony with reproductive events occurring in the oviduct, that is, sperm arrival, fertilization, and early embryo development. Extracellular vesicles (EVs) have been recently recognized as key components of the embryonic milieu; however, composition and function of oviductal EVs during this crucial period remains to be further explored. Therefore, we initially characterized EVs from porcine oviductal fluid specifically around the critical ovulation window: that is, estrus (E), late estrus (LE, day of expected ovulation), post ovulation (PO), and additionally diestrus (D). Total EV numbers gradually rose from D to E, LE and PO (P < 0.05), which corresponded to the total EV protein amount (P < 0.05). Strikingly, the mean size of EVs in PO was significantly smaller than in E and LE groups, which also had a lesser proportion of small EVs (P < 0.05). The EV protein cargoes during the periovulatory period were further analyzed by mass spectrometry. Qualitative analysis detected 1118 common proteins, which are most enriched in the cellular component of EVs/exosomes. Hierarchical clustering indicated similar protein profile within the biological replicates, but large discrepancy among stages. Further quantitative analysis discovered 34 and 4 differentially expressed proteins in the comparison between E and PO and in the comparison between E and LE, respectively. The dynamic EV protein profile together with the quick adaption in EV size and quantity suggests that porcine oviductal EV secretion are under the hormonal influence during the estrus cycle.


Assuntos
Vesículas Extracelulares/metabolismo , Oviductos/metabolismo , Ovulação , Animais , Feminino , Análise de Componente Principal , Proteoma , Suínos
6.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32284519

RESUMO

Maternal stress before or during the sensitive preimplantation phase is associated with reproduction failure. Upon real or perceived threat, glucocorticoids (classic stress hormones) as cortisol are synthesized. The earliest "microenvironment" of the embryo consists of the oviduct epithelium and the oviductal fluid generated via the epithelial barrier. However, to date, the direct effects of cortisol on the oviduct are largely unknown. In the present study, we used a compartmentalized in vitro system to test the hypothesis that a prolonged stimulation with cortisol modifies the physiology of the oviduct epithelium. Porcine oviduct epithelial cells were differentiated at the air-liquid interface and basolaterally stimulated with physiological levels of cortisol representing moderate and severe stress for 21 days. Epithelium structure, transepithelial bioelectric properties, and gene expression were assessed. Furthermore, the distribution and metabolism of cortisol was examined. The polarized oviduct epithelium converted basolateral cortisol to cortisone and thereby reduced the amount of bioactive cortisol reaching the apical compartment. However, extended cortisol stimulation affected its barrier function and the expression of genes involved in hormone signaling and immune response. We conclude that continuing maternal stress with long-term elevated cortisol levels may alter the early embryonic environment by modification of basic oviductal functions.


Assuntos
Microambiente Celular , Desenvolvimento Embrionário , Células Epiteliais/fisiologia , Hidrocortisona/metabolismo , Suínos/fisiologia , Animais , Diferenciação Celular , Epitélio/fisiologia , Tubas Uterinas/embriologia , Tubas Uterinas/fisiologia , Feminino , Glucocorticoides/metabolismo , Gravidez , Estresse Fisiológico , Suínos/embriologia
7.
Reprod Domest Anim ; 54 Suppl 3: 38-45, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31512315

RESUMO

The air-liquid interface (ALI) approach is primarily used to mimic respiratory tract epithelia in vitro. It is also known to support excellent differentiation of 3D multilayered skin models. To establish an ALI culture, epithelial cells are seeded into compartmentalized culture systems on porous filter supports or gel substrata. After an initial propagation period, the culture medium is removed from the apical side of the epithelium, exposing the cells to the surrounding air. Therefore, nutritive supply to the cells is warranted only by the basolateral cell pole. Under these conditions, the epithelial cells differentiate and regain full baso-apical polarity. Some types of epithelia even generate in vivo-like apical fluid or mucus. Interestingly, the ALI culture approach has also been shown to support morphological and functional differentiation of epithelial cells that are not normally exposed to ambient air in vivo. This review aims at giving a brief overview on the characteristics of ALI cultures in general and ALI models of female reproductive tract epithelia in particular. We discuss the applicability of ALI models for the investigation of the early embryonic microenvironment and for its implications in assisted reproductive technologies.


Assuntos
Técnicas de Cultura de Células , Genitália Feminina/citologia , Animais , Desenvolvimento Embrionário , Células Epiteliais/citologia , Feminino , Humanos , Modelos Biológicos , Técnicas de Reprodução Assistida/veterinária , Mucosa Respiratória/citologia
8.
Int J Mol Sci ; 21(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905654

RESUMO

The oviductal fluid is the first environment experienced by mammalian embryos at the very beginning of life. However, it has long been believed that the oviductal environment was not essential for proper embryonic development. Successful establishment of in vitro embryo production techniques (which completely bypass the oviduct) have reinforced this idea. Yet, it became evident that in vitro produced embryos differ markedly from their in vivo counterparts, and these differences are associated with lower pregnancy outcomes and more health issues after birth. Nowadays, researchers consider the oviduct as the most suitable microenvironment for early embryonic development and a substantial effort is made to understand its dynamic, species-specific functions. In this review, we touch on the origin and molecular components of the oviductal fluid in mammals, where recent progress has been made thanks to the wider use of mass spectrometry techniques. Some of the factors and processes known to regulate oviductal secretions, including the embryo itself, as well as ovulation, insemination, endogenous and exogenous hormones, and metabolic and heat stress, are summarized. Special emphasis is laid on farm animals because, owing to the availability of sample material and the economic importance of fertility in livestock husbandry, a large part of the work on this topic has been carried out in domestic animals used for dairy and/or meat production.


Assuntos
Tubas Uterinas/metabolismo , Líquido Folicular/metabolismo , Gravidez/metabolismo , Animais , Desenvolvimento Embrionário , Tubas Uterinas/fisiologia , Feminino , Hormônios/metabolismo , Humanos , Gravidez/fisiologia
10.
BMC Genomics ; 18(1): 889, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157197

RESUMO

BACKGROUND: Many genes important for reproductive performance are shared by both sexes. However, fecundity indices are primarily based on female parameters such as litter size. We examined a fertility mouse line (FL2), which has a considerably increased number of offspring and a total litter weight of 180% compared to a randomly bred control line (Ctrl) after more than 170 generations of breeding. In the present study, we investigated whether there might be a parallel evolution in males after more than 40 years of breeding in this outbred mouse model. RESULTS: Males of the fertility mouse line FL2 showed reduced sperm motility performance in a 5 h thermal stress experiment and reduced birth rate in the outbred mouse line. Transcriptional analysis of the FL2 testis showed the differential expression of genes associated with steroid metabolic processes (Cyp1b1, Cyp19a1, Hsd3b6, and Cyp21a1) and female fecundity (Gdf9), accompanied by 150% elevated serum progesterone levels in the FL2 males. Cluster analysis revealed the downregulation of genes of the kallikrein-related peptidases (KLK) cluster located on chromosome 7 in addition to alterations in gene expression with serine peptidase activity, e.g., angiotensinogen (Agt), of the renin-angiotensin system essential for ovulation. Although a majority of functional annotations map to female reproduction and ovulation, these genes are differentially expressed in FL2 testis. CONCLUSIONS: These data indicate that selection for primary female traits of increased litter size not only affects sperm characteristics but also manifests as transcriptional alterations of the male side likely with direct long-term consequences for the reproductive performance of the mouse line.


Assuntos
Fertilidade , Testículo/metabolismo , Animais , Coeficiente de Natalidade , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Progesterona/sangue , Motilidade dos Espermatozoides
11.
Reprod Biol Endocrinol ; 15(1): 91, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178958

RESUMO

We recently developed an air-liquid interface long-term culture of differentiated bovine oviductal epithelial cells (ALI-BOEC). This ex vivo oviduct epithelium is capable of supporting embryo development in co-culture up to the blastocyst stage without addition of embryo culture medium. However, blastocyst rates in co-culture were markedly lower than in conventional in vitro embryo production procedures. In the present study, we assessed target gene expression of ALI-BOEC derived embryos to test their similarity to embryos from conventional in vitro embryo culture. We screened previously published data from developing bovine embryos and selected 41 genes which are either differentially expressed during embryo development, or reflect differences between various in vitro culture conditions or in vitro and in vivo embryos. Target gene expression was measured in 8-cell embryos and blastocysts using a 48.48 Dynamic Array™ on a Biomark HD instrument. For comparison with the ALI-BOEC system, we generated embryos by two different standard IVP protocols. The culture conditions lead to differential gene expression in both 8-cell embryos and blastocysts. Across the expression of all target genes the embryos developing on ALI-BOEC did not depart from conventional IVP embryos. These first results prove that gene expression in ALI-BOEC embryos is not largely aberrant. However, there was no clear indication for a more in vivo-like target gene expression of these embryos. This calls for further optimization of the ALI-BOEC system to increase its efficiency both quantitatively and qualitatively.


Assuntos
Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/fisiologia , Células Epiteliais/citologia , Expressão Gênica , Oviductos/citologia , Animais , Bovinos , Técnicas de Cocultura/veterinária , Feminino
12.
Histochem Cell Biol ; 144(5): 509-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26223877

RESUMO

Cultivation of oviduct epithelial cells on porous filters fosters in vivo-like morphology and functionality. However, due to the optical properties of the filter materials and the cells' columnar shape, cell quality is hard to assess via light microscopy. In this study, we aim to evaluate transepithelial electrical resistance (TEER) measurement as a prognostic quality indicator for the cultivation of porcine oviduct epithelial cells (POEC). POEC were maintained in four different types of media for 3 and 6 w to achieve diverse culture qualities, and TEER was measured before processing samples for histology. Culture quality was scored using morphological criteria (presence of cilia, confluence and cell polarity). We furthermore analyzed the correlation between cellular height (as a measure of apical-basal polarization) and TEER in fully differentiated routine cultures (biological variation) and in cultures with altered cellular height due to hormonal stimulation. Fully differentiated cultures possessed a moderate TEER between 500 and 1100 Ω*cm(2). Only 5% of cultures which exhibited TEER values in this defined range had poor quality. Sub-differentiated cultures showed either very low or excessively high TEER. We unveiled a highly significant (P < 0.0001) negative linear correlation between TEER and epithelial height in well-differentiated cultures (both routine and hormone stimulated group). This may point toward the interaction between tight junction assembly and epithelial apical-basal polarization. In conclusion, TEER is a straightforward quality indicator which could be routinely used to monitor the differentiation status of oviduct epithelial cells in vitro.


Assuntos
Impedância Elétrica , Células Epiteliais/citologia , Filtração/instrumentação , Oviductos/citologia , Animais , Polaridade Celular , Células Cultivadas , Feminino , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Suínos
13.
Reproduction ; 147(4): 427-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24248751

RESUMO

Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.


Assuntos
Animais não Endogâmicos , Fertilidade/genética , Modelos Animais , Animais , Cruzamento , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Característica Quantitativa Herdável , Reprodução/genética , Maturidade Sexual/genética
14.
Genes (Basel) ; 15(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540441

RESUMO

Since artificial insemination is common practice in pig breeding, the quality and persistence of the semen are decisive for the usability of individual boars. In the current study, genome-wide association analyses were performed to investigate the genetic variability underlying phenotypic variations in semen characteristics. These traits comprise sperm morphology and sperm motility under different temporal and thermal storage conditions, in addition to standard semen quality parameters. Two consecutive samples of the fourth and fifth ejaculates from the same boar were comprehensively analyzed in a genotyped Piétrain boar population. A total of 13 genomic regions on different chromosomes were identified that contain single-nucleotide polymorphisms significantly associated with these traits. Subsequent analysis of the genomic regions revealed candidate genes described to be involved in spermatogenesis, such as FOXL3, GPER1, PDGFA, PRKAR1B, SNRK, SUN1, and TSPO, and sperm motility, including ARRDC4, CEP78, DNAAF5, and GPER1. Some of these genes were also associated with male fertility or infertility in mammals (e.g., CEP78, GPER1). The analyses based on these laboriously determined and valuable phenotypes contribute to a better understanding of the genetic background of male fertility traits in pigs and could prospectively contribute to the improvement of sperm quality through breeding approaches.


Assuntos
Análise do Sêmen , Sêmen , Suínos/genética , Masculino , Animais , Estudo de Associação Genômica Ampla , Motilidade dos Espermatozoides/genética , Espermatozoides , Mamíferos
15.
Biol Reprod ; 89(3): 54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23904510

RESUMO

Throughout the estrous cycle the oviduct epithelium undergoes dramatic morphological and functional changes. To elucidate cyclic cellular events and associated regulation mechanisms of 17beta estradiol (E2) and progesterone (P4), we mimicked estrous cycle stages in vitro using a culture system of primary porcine oviduct epithelium cells (POEC). Cells were polarized in an air/liquid interface and then treated with E2 and P4 for physiological time periods: In experiment 1, high concentration of P4 with low concentration of E2 for 10 days resembled diestrus; in experiment 2, following the previous diestrus, sequential high E2 with low P4 for 2.5 days represented estrus. Histomorphometry and electron microscopy showed cyclic changes in cellular height, cell population, and cilia density under the influence of hormone stimulation. Transepithelial electrical resistance was high in simulated diestrus but reduced in estrus. Thus, E2 and P4 affect cellular polarity, transformation of ciliated and secretory cells, as well as electrical conductivity of oviduct epithelium. Simulation of diestrus led to significant decrease in expression of hormone receptors (PGR and ESR1) and other epithelial markers (MUC16, OVGP1, and HSP90B1), while sequential simulated estrus caused an increase in these markers. The hormonal regulation of some marker genes was clearly time-dependent. Furthermore, POEC showed increased sperm-binding capacity in simulated estrus. In this study, we also present a novel approach based on the AndroVision software, which can be routinely utilized as a parameter for ciliary activity, and for the first time, we showed fluid movement patterns along the epithelium lining in vitro.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Estradiol/farmacologia , Ciclo Estral/fisiologia , Tubas Uterinas/citologia , Modelos Biológicos , Progesterona/farmacologia , Animais , Comunicação Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Células Cultivadas , Células Epiteliais/fisiologia , Tubas Uterinas/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Suínos
16.
J Anim Sci Biotechnol ; 14(1): 30, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797800

RESUMO

BACKGROUND: Spermatozoa interact with oviduct secretions before fertilization in vivo but the molecular players of this dialog and underlying dynamics remain largely unknown. Our objectives were to identify an exhaustive list of sperm-interacting proteins (SIPs) in the bovine oviduct fluid and to evaluate the impact of the oviduct anatomical region (isthmus vs. ampulla) and time relative to ovulation (pre-ovulatory vs. post-ovulatory) on SIPs number and abundance. METHODS: Pools of oviduct fluid (OF) from the pre-ovulatory ampulla, pre-ovulatory isthmus, post-ovulatory ampulla, and post-ovulatory isthmus in the side of ovulation were collected from the slaughterhouse. Frozen-thawed bull sperm were incubated with OF or phosphate-buffered saline (control) for 60 min at 38.5 °C. After protein extraction and digestion, sperm and OF samples were analyzed by nanoLC-MS/MS and label-free protein quantification. RESULTS: A quantitative comparison between proteins identified in sperm and OF samples (2333 and 2471 proteins, respectively) allowed for the identification of 245 SIPs. The highest number (187) were found in the pre-ovulatory isthmus, i.e., time and place of the sperm reservoir. In total, 41 SIPs (17%) were differentially abundant between stages in a given region or between regions at a given stage and 76 SIPs (31%) were identified in only one region × stage condition. Functional analysis of SIPs predicted roles in cell response to stress, regulation of cell motility, fertilization, and early embryo development. CONCLUSION: This study provides a comprehensive list of SIPs in the bovine oviduct and evidences dynamic spatio-temporal changes in sperm-oviduct interactions around ovulation time. Moreover, these data provide protein candidates to improve sperm conservation and in vitro fertilization media.

17.
Sci Rep ; 13(1): 10311, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365288

RESUMO

When entering the oviduct for fertilisation, spermatozoa come into contact with the oviduct fluid (OF) and can bind to luminal epithelial cells in the isthmus to form a sperm reservoir. The objective of this study was to examine how the OF modulates sperm adhesion to the oviduct reservoir using an in vitro model of oviduct epithelial spheroids (OES). Bovine oviducts from a local slaughterhouse were used to collect OF and isthmic fragments for the in vitro incubation of OES. Compared to a non-capacitating control medium, the pre-ovulatory OF significantly decreased by 80-90% the density of spermatozoa bound to OES without affecting sperm motility, membrane integrity, or sperm-cilia interactions. This effect on sperm binding was reproduced with (1) OF from different cycle stages and anatomical regions of the oviduct; (2) OF fractions of more than 3 kDa; (3) modified OF in which proteins were denatured or digested and (4) heparan sulphate but not hyaluronic acid, two glycosaminoglycans present in the OF. In conclusion, the OF significantly decreased the number of spermatozoa that bind to oviduct epithelial cells without affecting sperm motility and this effect was due to macromolecules, including heparan sulphate.


Assuntos
Glicosaminoglicanos , Motilidade dos Espermatozoides , Feminino , Humanos , Masculino , Animais , Bovinos , Glicosaminoglicanos/metabolismo , Sêmen/metabolismo , Oviductos/metabolismo , Tubas Uterinas/metabolismo , Espermatozoides/metabolismo , Heparitina Sulfato/metabolismo
18.
BMC Vet Res ; 8: 31, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22429795

RESUMO

BACKGROUND: Cervical uterine epithelial cells maintain a physiological and pathogen-free milieu in the female mammalian reproductive tract and are involved in sperm-epithelium interaction. Easily accessible, differentiated model systems of the cervical epithelium are not yet available to elucidate the underlying molecular mechanisms within these highly specialized cells. Therefore, the aim of the study was to establish a cell culture of the porcine cervical epithelium representing in vivo-like properties of the tissue. RESULTS: We tested different isolation methods and culture conditions and validated purity of the cultured cells by immunohistochemistry against keratins. We could reproducibly culture pure epithelial cells from cervical tissue explants. Based on a morphology score and the WST-1 Proliferation Assay, we optimized the growth medium composition. Primary porcine cervical cells performed best in conditioned Ham's F-12, containing 10% FCS, EGF and insulin. After cultivation in an air-liquid interface for three weeks, the cells showed a discontinuously multilayered phenotype. Finally, differentiation was validated via immunohistochemistry against beta catenin. Mucopolysaccharide production could be shown via alcian blue staining. CONCLUSIONS: We provide the first suitable protocol to establish a differentiated porcine epithelial model of the cervix uteri, based on easily accessible cells using slaughterhouse material.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Colo do Útero/citologia , Células Epiteliais/citologia , Animais , Células Cultivadas , Meios de Cultura , Células Epiteliais/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Queratinas/metabolismo , Suínos , beta Catenina/metabolismo
19.
Stem Cell Rev Rep ; 18(8): 2928-2938, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35849251

RESUMO

Two different types of epithelial cells constitute the inner surface of the endometrium. While luminal epithelial cells line the uterine cavity and build the embryo-maternal contact zone, glandular epithelial cells form tubular glands reaching deeply into the endometrial stroma. To facilitate investigations considering the functional and molecular differences between the two populations of epithelial cells and their contribution to reproductive processes, we aimed at establishing differentiated in vitro models of both the luminal and the glandular epithelium of the porcine endometrium using an air-liquid interface (ALI) approach. We first tested if porcine luminal endometrium epithelial cells (PEEC-L) reproducibly form differentiated epithelial monolayers under ALI conditions by monitoring the morphology and the trans-epithelial electrical resistance (TEER). Subsequently, luminal (PEEC-L) and glandular epithelial cells (PEEC-G) were consecutively isolated from the endometrium of the uterine horn. Both cell types were characterized by marker gene expression analysis immediately after isolation. Cells were separately grown at the ALI and assessed by means of histomorphometry, TEER, and marker gene expression after 3 weeks of culture. PEEC-L and PEEC-G formed polarized monolayers of differentiated epithelial cells with a moderate TEER and in vivo-like morphology at the ALI. They exhibited distinct patterns of functional and cell type-specific marker gene expression after isolation and largely maintained these patterns during the culture period. The here presented cell culture procedure for PEEC-L and -G offers new opportunities to study the impact of embryonic signals, endocrine effectors, and reproductive toxins on both porcine endometrial epithelial cell types under standardized in vitro conditions. Created with BioRender.com .


Assuntos
Endométrio , Células Epiteliais , Feminino , Suínos , Animais , Endométrio/metabolismo , Epitélio , Células Cultivadas , Expressão Gênica
20.
Cytotechnology ; 74(5): 531-538, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36238264

RESUMO

Basic knowledge about cellular and molecular mechanisms underlying feline reproduction is required to improve reproductive biotechnologies in endangered felids. Commonly, the domestic cat (Felis catus) is used as a model species, but many of the fine-tuned, dynamic reproductive processes can hardly be observed in vivo. This necessitates the development of in vitro models. The oviduct is a central reproductive organ hosting fertilization in the ampulla and early embryonic development in the isthmus part, which also functions as a sperm reservoir before fertilization. In other species, culturing oviduct epithelial cells in compartmentalized culture systems has proven useful to maintain oviduct epithelium polarization and functionality. Therefore, we made the first attempt to establish a compartmentalized long-term culture system of feline oviduct epithelial cells from both ampulla and isthmus. Cells were isolated from tissue samples (n = 33 animals) after routine gonadectomy, seeded on permeable filter supports and cultured at the liquid-liquid or air-liquid interface. Cultures were harvested after 21 days and microscopically evaluated for epithelial differentiation (monolayer formation with basal-apical polarization) and protein expression of marker genes (oviduct-specific glycoprotein, acetylated tubulin). Due to the heterogeneous and undefined native tissue material available for this study, the applied cell culture approach was only successful in a limited number of cases (five differentiated cultures). Even though the protocol needs optimization, our study showed that the compartmentalized culture approach is suitable for maintaining differentiated epithelial cells from both isthmus and ampulla of the feline oviduct.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA