Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mult Scler ; 30(1): 103-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084497

RESUMO

INTRODUCTION: Multiple sclerosis (MS) is a leading cause of disability among young adults, but standard clinical scales may not accurately detect subtle changes in disability occurring between visits. This study aims to explore whether wearable device data provides more granular and objective measures of disability progression in MS. METHODS: Remote Assessment of Disease and Relapse in Central Nervous System Disorders (RADAR-CNS) is a longitudinal multicenter observational study in which 400 MS patients have been recruited since June 2018 and prospectively followed up for 24 months. Monitoring of patients included standard clinical visits with assessment of disability through use of the Expanded Disability Status Scale (EDSS), 6-minute walking test (6MWT) and timed 25-foot walk (T25FW), as well as remote monitoring through the use of a Fitbit. RESULTS: Among the 306 patients who completed the study (mean age, 45.6 years; females 67%), confirmed disability progression defined by the EDSS was observed in 74 patients, who had approximately 1392 fewer daily steps than patients without disability progression. However, the decrease in the number of steps experienced over time by patients with EDSS progression and stable patients was not significantly different. Similar results were obtained with disability progression defined by the 6MWT and the T25FW. CONCLUSION: The use of continuous activity monitoring holds great promise as a sensitive and ecologically valid measure of disability progression in MS.


Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação da Deficiência , Esclerose Múltipla/diagnóstico , Teste de Caminhada , Caminhada/fisiologia , Adulto
2.
Proc Biol Sci ; 290(1995): 20222473, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919432

RESUMO

As more land is altered by human activity and more species become at risk of extinction, it is essential that we understand the requirements for conserving threatened species across human-modified landscapes. Owing to their rarity and often sparse distributions, threatened species can be difficult to study and efficient methods to sample them across wide temporal and spatial scales have been lacking. Passive acoustic monitoring (PAM) is increasingly recognized as an efficient method for collecting data on vocal species; however, the development of automated species detectors required to analyse large amounts of acoustic data is not keeping pace. Here, we collected 35 805 h of acoustic data across 341 sites in a region over 1000 km2 to show that PAM, together with a newly developed automated detector, is able to successfully detect the endangered Geoffroy's spider monkey (Ateles geoffroyi), allowing us to show that Geoffroy's spider monkey was absent below a threshold of 80% forest cover and within 1 km of primary paved roads and occurred equally in old growth and secondary forests. We discuss how this methodology circumvents many of the existing issues in traditional sampling methods and can be highly successful in the study of vocally rare or threatened species. Our results provide tools and knowledge for setting targets and developing conservation strategies for the protection of Geoffroy's spider monkey.


Assuntos
Ateles geoffroyi , Animais , Humanos , Florestas , Espécies em Perigo de Extinção , Acústica
3.
Pattern Recognit ; 122: 108289, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34483372

RESUMO

The Coronavirus (COVID-19) pandemic impelled several research efforts, from collecting COVID-19 patients' data to screening them for virus detection. Some COVID-19 symptoms are related to the functioning of the respiratory system that influences speech production; this suggests research on identifying markers of COVID-19 in speech and other human generated audio signals. In this article, we give an overview of research on human audio signals using 'Artificial Intelligence' techniques to screen, diagnose, monitor, and spread the awareness about COVID-19. This overview will be useful for developing automated systems that can help in the context of COVID-19, using non-obtrusive and easy to use bio-signals conveyed in human non-speech and speech audio productions.

4.
Pattern Recognit ; 122: 108361, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34629550

RESUMO

The sudden outbreak of COVID-19 has resulted in tough challenges for the field of biometrics due to its spread via physical contact, and the regulations of wearing face masks. Given these constraints, voice biometrics can offer a suitable contact-less biometric solution; they can benefit from models that classify whether a speaker is wearing a mask or not. This article reviews the Mask Sub-Challenge (MSC) of the INTERSPEECH 2020 COMputational PARalinguistics challengE (ComParE), which focused on the following classification task: Given an audio chunk of a speaker, classify whether the speaker is wearing a mask or not. First, we report the collection of the Mask Augsburg Speech Corpus (MASC) and the baseline approaches used to solve the problem, achieving a performance of 71.8 % Unweighted Average Recall (UAR). We then summarise the methodologies explored in the submitted and accepted papers that mainly used two common patterns: (i) phonetic-based audio features, or (ii) spectrogram representations of audio combined with Convolutional Neural Networks (CNNs) typically used in image processing. Most approaches enhance their models by adapting ensembles of different models and attempting to increase the size of the training data using various techniques. We review and discuss the results of the participants of this sub-challenge, where the winner scored a UAR of 80.1 % . Moreover, we present the results of fusing the approaches, leading to a UAR of 82.6 % . Finally, we present a smartphone app that can be used as a proof of concept demonstration to detect in real-time whether users are wearing a face mask; we also benchmark the run-time of the best models.

5.
Pattern Recognit ; 123: 108403, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34720200

RESUMO

This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of 95.3 % , a sensitivity of 100 % and a specificity of 90.6 % , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate.

6.
J Acoust Soc Am ; 149(6): 4377, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241490

RESUMO

COVID-19 is a global health crisis that has been affecting our daily lives throughout the past year. The symptomatology of COVID-19 is heterogeneous with a severity continuum. Many symptoms are related to pathological changes in the vocal system, leading to the assumption that COVID-19 may also affect voice production. For the first time, the present study investigates voice acoustic correlates of a COVID-19 infection based on a comprehensive acoustic parameter set. We compare 88 acoustic features extracted from recordings of the vowels /i:/, /e:/, /u:/, /o:/, and /a:/ produced by 11 symptomatic COVID-19 positive and 11 COVID-19 negative German-speaking participants. We employ the Mann-Whitney U test and calculate effect sizes to identify features with prominent group differences. The mean voiced segment length and the number of voiced segments per second yield the most important differences across all vowels indicating discontinuities in the pulmonic airstream during phonation in COVID-19 positive participants. Group differences in front vowels are additionally reflected in fundamental frequency variation and the harmonics-to-noise ratio, group differences in back vowels in statistics of the Mel-frequency cepstral coefficients and the spectral slope. Our findings represent an important proof-of-concept contribution for a potential voice-based identification of individuals infected with COVID-19.


Assuntos
COVID-19 , Voz , Acústica , Humanos , Fonação , SARS-CoV-2 , Acústica da Fala , Qualidade da Voz
7.
Methods ; 151: 41-54, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30099083

RESUMO

Due to the complex and intricate nature associated with their production, the acoustic-prosodic properties of a speech signal are modulated with a range of health related effects. There is an active and growing area of machine learning research in this speech and health domain, focusing on developing paradigms to objectively extract and measure such effects. Concurrently, deep learning is transforming intelligent signal analysis, such that machines are now reaching near human capabilities in a range of recognition and analysis tasks. Herein, we review current state-of-the-art approaches with speech-based health detection, placing a particular focus on the impact of deep learning within this domain. Based on this overview, it is evident while that deep learning based solutions be become more present in the literature, it has not had the same overall dominating effect seen in other related fields. In this regard, we suggest some possible research directions aimed at fully leveraging the advantages that deep learning can offer speech-based health detection.


Assuntos
Aprendizado Profundo/tendências , Fala , Acústica , Humanos , Redes Neurais de Computação
8.
Psychiatry Clin Neurosci ; 73(2): 50-62, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30565801

RESUMO

AIM: Emotional expressions are one of the most widely studied topics in neuroscience, from both clinical and non-clinical perspectives. Atypical emotional expressions are seen in various psychiatric conditions, including schizophrenia, depression, and autism spectrum conditions. Understanding the basics of emotional expressions and recognition can be crucial for diagnostic and therapeutic procedures. Emotions can be expressed in the face, gesture, posture, voice, and behavior and affect physiological parameters, such as the heart rate or body temperature. With modern technology, clinicians can use a variety of tools ranging from sophisticated laboratory equipment to smartphones and web cameras. The aim of this paper is to review the currently used tools using modern technology and discuss their usefulness as well as possible future directions in emotional expression research and treatment strategies. METHODS: The authors conducted a literature review in the PubMed, EBSCO, and SCOPUS databases, using the following key words: 'emotions,' 'emotional expression,' 'affective computing,' and 'autism.' The most relevant and up-to-date publications were identified and discussed. Search results were supplemented by the authors' own research in the field of emotional expression. RESULTS: We present a critical review of the currently available technical diagnostic and therapeutic methods. The most important studies are summarized in a table. CONCLUSION: Most of the currently available methods have not been adequately validated in clinical settings. They may be a great help in everyday practice; however, they need further testing. Future directions in this field include more virtual-reality-based and interactive interventions, as well as development and improvement of humanoid robots.


Assuntos
Emoções/fisiologia , Expressão Facial , Músculos Faciais/fisiologia , Reconhecimento Facial/fisiologia , Transtornos Mentais/fisiopatologia , Comunicação não Verbal/fisiologia , Percepção Social , Voz/fisiologia , Humanos
9.
Curr Neurol Neurosci Rep ; 17(5): 43, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28390033

RESUMO

PURPOSE OF REVIEW: Substantial research exists focusing on the various aspects and domains of early human development. However, there is a clear blind spot in early postnatal development when dealing with neurodevelopmental disorders, especially those that manifest themselves clinically only in late infancy or even in childhood. RECENT FINDINGS: This early developmental period may represent an important timeframe to study these disorders but has historically received far less research attention. We believe that only a comprehensive interdisciplinary approach will enable us to detect and delineate specific parameters for specific neurodevelopmental disorders at a very early age to improve early detection/diagnosis, enable prospective studies and eventually facilitate randomised trials of early intervention. In this article, we propose a dynamic framework for characterising neurofunctional biomarkers associated with specific disorders in the development of infants and children. We have named this automated detection 'Fingerprint Model', suggesting one possible approach to accurately and early identify neurodevelopmental disorders.


Assuntos
Biomarcadores , Diagnóstico Precoce , Transtornos do Neurodesenvolvimento/diagnóstico , Humanos
10.
J Acoust Soc Am ; 142(4): 1796, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092546

RESUMO

In recent years, research fields, including ecology, bioacoustics, signal processing, and machine learning, have made bird sound recognition a part of their focus. This has led to significant advancements within the field of ornithology, such as improved understanding of evolution, local biodiversity, mating rituals, and even the implications and realities associated to climate change. The volume of unlabeled bird sound data is now overwhelming, and comparatively little exploration is being made into methods for how best to handle them. In this study, two active learning (AL) methods are proposed, sparse-instance-based active learning (SI-AL), and least-confidence-score-based active learning (LCS-AL), both effectively reducing the need for expert human annotation. To both of these AL paradigms, a kernel-based extreme learning machine (KELM) is then integrated, and a comparison is made to the conventional support vector machine (SVM). Experimental results demonstrate that, when the classifier capacity is improved from an unweighted average recall of 60%-80%, KELM can outperform SVM even when a limited proportion of human annotations are used from the pool of data in both cases of SI-AL (minimum 34.5% vs minimum 59.0%) and LCS-AL (minimum 17.3% vs minimum 28.4%).


Assuntos
Acústica , Aves/classificação , Aves/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Aprendizado de Máquina Supervisionado , Vocalização Animal/classificação , Animais , Bases de Dados Factuais , Máquina de Vetores de Suporte
11.
Patterns (N Y) ; 5(3): 100952, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38487807

RESUMO

In their recent publication in Patterns, the authors proposed a methodology based on sample-free Bayesian neural networks and label smoothing to improve both predictive and calibration performance on animal call detection. Such approaches have the potential to foster trust in algorithmic decision making and enhance policy making in applications about conservation using recordings made by on-site passive acoustic monitoring equipment. This interview is a companion to these authors' recent paper, "Propagating Variational Model Uncertainty for Bioacoustic Call Label Smoothing".

12.
Artigo em Inglês | MEDLINE | ID: mdl-38696290

RESUMO

Due to the objectivity of emotional expression in the central nervous system, EEG-based emotion recognition can effectively reflect humans' internal emotional states. In recent years, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have made significant strides in extracting local features and temporal dependencies from EEG signals. However, CNNs ignore spatial distribution information from EEG electrodes; moreover, RNNs may encounter issues such as exploding/vanishing gradients and high time consumption. To address these limitations, we propose an attention-based temporal graph representation network (ATGRNet) for EEG-based emotion recognition. Firstly, a hierarchical attention mechanism is introduced to integrate feature representations from both frequency bands and channels ordered by priority in EEG signals. Second, a graph convolutional neural network with top-k operation is utilized to capture internal relationships between EEG electrodes under different emotion patterns. Next, a residual-based graph readout mechanism is applied to accumulate the EEG feature node-level representations into graph-level representations. Finally, the obtained graph-level representations are fed into a temporal convolutional network (TCN) to extract the temporal dependencies between EEG frames. We evaluated our proposed ATGRNet on the SEED, DEAP and FACED datasets. The experimental findings show that the proposed ATGRNet surpasses the state-of-the-art graph-based mehtods for EEG-based emotion recognition.

13.
IEEE Trans Pattern Anal Mach Intell ; 46(2): 805-822, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851557

RESUMO

Automatically recognising apparent emotions from face and voice is hard, in part because of various sources of uncertainty, including in the input data and the labels used in a machine learning framework. This paper introduces an uncertainty-aware multimodal fusion approach that quantifies modality-wise aleatoric or data uncertainty towards emotion prediction. We propose a novel fusion framework, in which latent distributions over unimodal temporal context are learned by constraining their variance. These variance constraints, Calibration and Ordinal Ranking, are designed such that the variance estimated for a modality can represent how informative the temporal context of that modality is w.r.t. emotion recognition. When well-calibrated, modality-wise uncertainty scores indicate how much their corresponding predictions are likely to differ from the ground truth labels. Well-ranked uncertainty scores allow the ordinal ranking of different frames across different modalities. To jointly impose both these constraints, we propose a softmax distributional matching loss. Our evaluation on AVEC 2019 CES, CMU-MOSEI, and IEMOCAP datasets shows that the proposed multimodal fusion method not only improves the generalisation performance of emotion recognition models and their predictive uncertainty estimates, but also makes the models robust to novel noise patterns encountered at test time.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39012744

RESUMO

Ubiquitous sensing has been widely applied in smart healthcare, providing an opportunity for intelligent heart sound auscultation. However, smart devices contain sensitive information, raising user privacy concerns. To this end, federated learning (FL) has been adopted as an effective solution, enabling decentralised learning without data sharing, thus preserving data privacy in the Internet of Health Things (IoHT). Nevertheless, traditional FL requires the same architectural models to be trained across local clients and global servers, leading to a lack of model heterogeneity and client personalisation. For medical institutions with private data clients, this study proposes Fed-MStacking, a heterogeneous FL framework that incorporates a stacking ensemble learning strategy to support clients in building their own models. The secondary objective of this study is to address scenarios involving local clients with data characterised by inconsistent labelling. Specifically, the local client contains only one case type, and the data cannot be shared within or outside the institution. To train a global multi-class classifier, we aggregate missing class information from all clients at each institution and build meta-data, which then participates in FL training via a meta-learner. We apply the proposed framework to a multi-institutional heart sound database. The experiments utilise random forests (RFs), feedforward neural networks (FNNs), and convolutional neural networks (CNNs) as base classifiers. The results show that the heterogeneous stacking of local models performs better compared to homogeneous stacking.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38809724

RESUMO

This scoping review paper redefines the Artificial Intelligence-based Internet of Things (AIoT) driven Human Activity Recognition (HAR) field by systematically extrapolating from various application domains to deduce potential techniques and algorithms. We distill a general model with adaptive learning and optimization mechanisms by conducting a detailed analysis of human activity types and utilizing contact or non-contact devices. It presents various system integration mathematical paradigms driven by multimodal data fusion, covering predictions of complex behaviors and redefining valuable methods, devices, and systems for HAR. Additionally, this paper establishes benchmarks for behavior recognition across different application requirements, from simple localized actions to group activities. It summarizes open research directions, including data diversity and volume, computational limitations, interoperability, real-time recognition, data security, and privacy concerns. Finally, we aim to serve as a comprehensive and foundational resource for researchers delving into the complex and burgeoning realm of AIoT-enhanced HAR, providing insights and guidance for future innovations and developments.

16.
Heliyon ; 10(1): e23142, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163154

RESUMO

Among the 17 Sustainable Development Goals (SDGs) proposed within the 2030 Agenda and adopted by all the United Nations member states, the 13th SDG is a call for action to combat climate change. Moreover, SDGs 14 and 15 claim the protection and conservation of life below water and life on land, respectively. In this work, we provide a literature-founded overview of application areas, in which computer audition - a powerful but in this context so far hardly considered technology, combining audio signal processing and machine intelligence - is employed to monitor our ecosystem with the potential to identify ecologically critical processes or states. We distinguish between applications related to organisms, such as species richness analysis and plant health monitoring, and applications related to the environment, such as melting ice monitoring or wildfire detection. This work positions computer audition in relation to alternative approaches by discussing methodological strengths and limitations, as well as ethical aspects. We conclude with an urgent call to action to the research community for a greater involvement of audio intelligence methodology in future ecosystem monitoring approaches.

17.
Digit Health ; 10: 20552076241258276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894942

RESUMO

Objective: Millions of people in the UK have asthma, yet 70% do not access basic care, leading to the largest number of asthma-related deaths in Europe. Chatbots may extend the reach of asthma support and provide a bridge to traditional healthcare. This study evaluates 'Brisa', a chatbot designed to improve asthma patients' self-assessment and self-management. Methods: We recruited 150 adults with an asthma diagnosis to test our chatbot. Participants were recruited over three waves through social media and a research recruitment platform. Eligible participants had access to 'Brisa' via a WhatsApp or website version for 28 days and completed entry and exit questionnaires to evaluate user experience and asthma control. Weekly symptom tracking, user interaction metrics, satisfaction measures, and qualitative feedback were utilised to evaluate the chatbot's usability and potential effectiveness, focusing on changes in asthma control and self-reported behavioural improvements. Results: 74% of participants engaged with 'Brisa' at least once. High task completion rates were observed: asthma attack risk assessment (86%), voice recording submission (83%) and asthma control tracking (95.5%). Post use, an 8% improvement in asthma control was reported. User satisfaction surveys indicated positive feedback on helpfulness (80%), privacy (87%), trustworthiness (80%) and functionality (84%) but highlighted a need for improved conversational depth and personalisation. Conclusions: The study indicates that chatbots are effective for asthma support, demonstrated by the high usage of features like risk assessment and control tracking, as well as a statistically significant improvement in asthma control. However, lower satisfaction in conversational flexibility highlights rising expectations for chatbot fluency, influenced by advanced models like ChatGPT. Future health-focused chatbots must balance conversational capability with accuracy and safety to maintain engagement and effectiveness.

18.
Patterns (N Y) ; 5(3): 100932, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38487806

RESUMO

Along with propagating the input toward making a prediction, Bayesian neural networks also propagate uncertainty. This has the potential to guide the training process by rejecting predictions of low confidence, and recent variational Bayesian methods can do so without Monte Carlo sampling of weights. Here, we apply sample-free methods for wildlife call detection on recordings made via passive acoustic monitoring equipment in the animals' natural habitats. We further propose uncertainty-aware label smoothing, where the smoothing probability is dependent on sample-free predictive uncertainty, in order to downweigh data samples that should contribute less to the loss value. We introduce a bioacoustic dataset recorded in Malaysian Borneo, containing overlapping calls from 30 species. On that dataset, our proposed method achieves an absolute percentage improvement of around 1.5 points on area under the receiver operating characteristic (AU-ROC), 13 points in F1, and 19.5 points in expected calibration error (ECE) compared to the point-estimate network baseline averaged across all target classes.

19.
IEEE Trans Biomed Eng ; PP2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700959

RESUMO

OBJECTIVE: Early diagnosis of cardiovascular diseases is a crucial task in medical practice. With the application of computer audition in the healthcare field, artificial intelligence (AI) has been applied to clinical non-invasive intelligent auscultation of heart sounds to provide rapid and effective pre-screening. However, AI models generally require large amounts of data which may cause privacy issues. Unfortunately, it is difficult to collect large amounts of healthcare data from a single centre. METHODS: In this study, we propose federated learning (FL) optimisation strategies for the practical application in multi-centre institutional heart sound databases. The horizontal FL is mainly employed to tackle the privacy problem by aligning the feature spaces of FL participating institutions without information leakage. In addition, techniques based on deep learning have poor interpretability due to their "black-box" property, which limits the feasibility of AI in real medical data. To this end, vertical FL is utilised to address the issues of model interpretability and data scarcity. CONCLUSION: Experimental results demonstrate that, the proposed FL framework can achieve good performance for heart sound abnormality detection by taking the personal privacy protection into account. Moreover, using the federated feature space is beneficial to balance the interpretability of the vertical FL and the privacy of the data. SIGNIFICANCE: This work realises the potential of FL from research to clinical practice, and is expected to have extensive application in the federated smart medical system.

20.
Cyborg Bionic Syst ; 5: 0075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440319

RESUMO

Leveraging the power of artificial intelligence to facilitate an automatic analysis and monitoring of heart sounds has increasingly attracted tremendous efforts in the past decade. Nevertheless, lacking on standard open-access database made it difficult to maintain a sustainable and comparable research before the first release of the PhysioNet CinC Challenge Dataset. However, inconsistent standards on data collection, annotation, and partition are still restraining a fair and efficient comparison between different works. To this line, we introduced and benchmarked a first version of the Heart Sounds Shenzhen (HSS) corpus. Motivated and inspired by the previous works based on HSS, we redefined the tasks and make a comprehensive investigation on shallow and deep models in this study. First, we segmented the heart sound recording into shorter recordings (10 s), which makes it more similar to the human auscultation case. Second, we redefined the classification tasks. Besides using the 3 class categories (normal, moderate, and mild/severe) adopted in HSS, we added a binary classification task in this study, i.e., normal and abnormal. In this work, we provided detailed benchmarks based on both the classic machine learning and the state-of-the-art deep learning technologies, which are reproducible by using open-source toolkits. Last but not least, we analyzed the feature contributions of best performance achieved by the benchmark to make the results more convincing and interpretable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA