Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Nanobiotechnology ; 20(1): 418, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123687

RESUMO

The cell/microenvironment interface is the starting point of integrin-mediated mechanotransduction, but many details of mechanotransductive signal integration remain elusive due to the complexity of the involved (extra)cellular structures, such as the glycocalyx. We used nano-bio-interfaces reproducing the complex nanotopographical features of the extracellular matrix to analyse the glycocalyx impact on PC12 cell mechanosensing at the nanoscale (e.g., by force spectroscopy with functionalised probes). Our data demonstrates that the glycocalyx configuration affects spatio-temporal nanotopography-sensitive mechanotransductive events at the cell/microenvironment interface. Opposing effects of major glycocalyx removal were observed, when comparing flat and specific nanotopographical conditions. The excessive retrograde actin flow speed and force loading are strongly reduced on certain nanotopographies upon strong reduction of the native glycocalyx, while on the flat substrate we observe the opposite trend. Our results highlight the importance of the glycocalyx configuration in a molecular clutch force loading-dependent cellular mechanism for mechanosensing of microenvironmental nanotopographical features.


Assuntos
Glicocálix , Mecanotransdução Celular , Actinas , Glicocálix/fisiologia , Integrinas , Percepção
2.
Sensors (Basel) ; 22(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336366

RESUMO

Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems. Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion, migration, and differentiation. Given the strong interplay between cells and their microenvironment, the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an important role in the transmission of external stimuli to single cells within the tissue. Vice versa, cells themselves also use self-generated forces to probe the biophysical properties of the ECM. ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in health and disease conditions of living organisms. Force sensing in biological systems is therefore crucial to dissecting and understanding complex biological processes, such as mechanotransduction. Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in biophysics and mechanobiology. In this work, we report on the application of AFM to the study of biomechanical fingerprints of different components of biological systems, such as the ECM, the whole cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that physical observables such as the (spatially resolved) Young's Modulus (YM) of elasticity of ECMs or cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological conditions, or gene regulation.


Assuntos
Fenômenos Mecânicos , Mecanotransdução Celular , Fenômenos Biomecânicos , Adesão Celular , Microscopia de Força Atômica
3.
Nature ; 525(7568): 222-5, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26322581

RESUMO

Resonance fluorescence arises from the interaction of an optical field with a two-level system, and has played a fundamental role in the development of quantum optics and its applications. Despite its conceptual simplicity, it entails a wide range of intriguing phenomena, such as the Mollow-triplet emission spectrum, photon antibunching and coherent photon emission. One fundamental aspect of resonance fluorescence--squeezing in the form of reduced quantum fluctuations in the single photon stream from an atom in free space--was predicted more than 30 years ago. However, the requirement to operate in the weak excitation regime, together with the combination of modest oscillator strength of atoms and low collection efficiencies, has continued to necessitate stringent experimental conditions for the observation of squeezing with atoms. Attempts to circumvent these issues had to sacrifice antibunching, owing to either stimulated forward scattering from atomic ensembles or multi-photon transitions inside optical cavities. Here, we use an artificial atom with a large optical dipole enabling 100-fold improvement of the photon detection rate over the natural atom counterpart and reach the necessary conditions for the observation of quadrature squeezing in single resonance-fluorescence photons. By implementing phase-dependent homodyne intensity-correlation detection, we demonstrate that the electric field quadrature variance of resonance fluorescence is three per cent below the fundamental limit set by vacuum fluctuations, while the photon statistics remain antibunched. The presence of squeezing and antibunching simultaneously is a fully non-classical outcome of the wave-particle duality of photons.

4.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887407

RESUMO

The urgent need to develop a detection system for Staphylococcus aureus, one of the most common causes of infection, is prompting research towards novel approaches and devices, with a particular focus on point-of-care analysis. Biosensors are promising systems to achieve this aim. We coupled the selectivity and affinity of aptamers, short nucleic acids sequences able to recognize specific epitopes on bacterial surface, immobilized at high density on a nanostructured zirconium dioxide surface, with the rational design of specifically interacting fluorescent peptides to assemble an easy-to-use detection device. We show that the displacement of fluorescent peptides upon the competitive binding of S. aureus to immobilized aptamers can be detected and quantified through fluorescence loss. This approach could be also applied to the detection of other bacterial species once aptamers interacting with specific antigens will be identified, allowing the development of a platform for easy detection of a pathogen without requiring access to a healthcare environment.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Staphylococcus aureus , Peptídeos , Staphylococcus aureus/isolamento & purificação
5.
EMBO J ; 33(21): 2458-72, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25168639

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure-function analyses of uPAR, VN and integrins, we document that uPAR-mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin-matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non-canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non-integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch.


Assuntos
Integrinas/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais/fisiologia , Vitronectina/metabolismo , Adesão Celular/fisiologia , Células HEK293 , Humanos , Integrinas/genética , Mutação , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Vitronectina/genética
6.
Acc Chem Res ; 50(2): 231-239, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28116907

RESUMO

The development of smart prosthetics, scaffolds, and biomaterials for tissue engineering and organ-on-a-chip devices heavily depends on the understanding and control of biotic/abiotic interfaces. In recent years, the nanometer scale emerged as the predominant dimension for processes impacting on protein adsorption and cellular responses on surfaces. In this context, the extracellular matrix (ECM) can be seen as the prototype for an intricate natural structure assembled by nanoscale building blocks forming highly variable nanoscale configurations, dictating cellular behavior and fate. How exactly the ECM nanotopography influences mechanotransduction, that is, the cellular capacity to convert information received from the ECM into appropriate responses, remains partially understood due to the complexity of the involved biological structures, limiting also the attempts to artificially reproduce the nanoscale complexity of the ECM. In this Account, we describe and discuss our strategies for the development of an efficient and large-scale bottom-up approach to fabricate surfaces with multiscale controlled disorder as substrates to study quantitatively the effect of nanoscale topography on biological entities. Our method is based on the use of supersonic cluster beam deposition (SCBD) to assemble, on a substrate, neutral clusters produced in the gas phase and accelerated by a supersonic expansion. The assembling of clusters in the ballistic deposition regime follows simple scaling laws, allowing the quantitative control of surface roughness and asperity layout over large areas. Due to their biocompatibility, we focused on transition metal oxide nanostructured surfaces assembled by titania and zirconia clusters. We demonstrated the engineering of structural and functional properties of the cluster-assembled surfaces with high relevance for interactions at the biotic/abiotic interface. We observed that isoelectric point and wettability, crucial parameters for the adhesion of biological entities on surfaces, are strongly influenced and controlled by the nanoscale roughness. By developing a high-throughput method (protein surface interaction microarray, PSIM), we characterized quantitatively the capacity of the nanostructured surfaces to adsorb proteins, showing that with increasing roughness the adsorption rises beyond what could be expected by the increase in specific area, paralleled by an almost linear decrease in protein binding affinity. We also determined that the spatial layout of the surface asperities effectively perceived by the cells mimics at the nanoscale the topographical ECM characteristics. The interaction with these features consequently regulates parameters significant for cell adhesion and mechanotransductive signaling, such as integrin clustering, focal adhesion maturation, and the correlated cellular mechanobiology, eventually impacting the cellular program and differentiation, as we specifically showed for neuronal cells.


Assuntos
Nanoestruturas/química , Proteínas/química , Adsorção , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Adesão Celular/fisiologia , Diferenciação Celular , Matriz Extracelular/metabolismo , Células PC12 , Proteínas/metabolismo , Ratos , Propriedades de Superfície , Titânio/química , Água/química , Zircônio/química
7.
Langmuir ; 34(41): 12452-12462, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30213187

RESUMO

The study of the toxicity, biocompatibility, and environmental sustainability of room-temperature ionic liquids (ILs) is still in its infancy. Understanding the impact of ILs on living organisms, especially from the aquatic ecosystem, is urgent, since large amounts of these substances are starting to be employed as solvents in industrial chemical processes, and on the other side, evidence of toxic effects of ILs on microorganisms and single cells have been observed. To date, the toxicity of ILs has been investigated by means of macroscopic assays aimed at characterizing the effective concentrations (like the EC50) that cause the death of a significant fraction of the population of microorganisms and cells. These studies allow us to identify the cell membrane as the first target of the IL interaction, whose effectiveness was correlated to the lipophilicity of the cation, i.e., to the length of the lateral alkyl chain. Our study aimed at investigating the molecular mechanisms underpinning the interaction of ILs with living cells. To this purpose, we carried out a combined topographic and mechanical analysis by atomic force microscopy of living breast metastatic cancer cells (MDA-MB-231) upon interaction with imidazolium-based ILs. We showed that ILs are able to induce modifications of the overall rigidity (effective Young's modulus) and morphology of the cells. Our results demonstrate that ILs act on the physical properties of the outer cell layer (the membrane linked to the actin cytoskeleton), already at concentrations below the EC50. These potentially toxic effects are stronger at higher IL concentrations, as well as with longer lateral chains in the cation.


Assuntos
Membrana Celular/efeitos dos fármacos , Células Epiteliais/citologia , Imidazóis/efeitos adversos , Líquidos Iônicos/efeitos adversos , Linhagem Celular Tumoral , Membrana Celular/química , Módulo de Elasticidade , Humanos , Imidazóis/química , Líquidos Iônicos/química , Microscopia de Força Atômica , Estrutura Molecular
8.
J Nanobiotechnology ; 14: 18, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26955876

RESUMO

BACKGROUND: Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood. RESULTS: Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes. CONCLUSION: Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanoestruturas/administração & dosagem , Zircônio/administração & dosagem , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Células PC12 , Ratos , Propriedades de Superfície/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Phys Rev Lett ; 113(26): 263601, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615329

RESUMO

Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2*, exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.

10.
Eur J Cell Biol ; 103(2): 151417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729084

RESUMO

Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.


Assuntos
Mecanotransdução Celular , Humanos , Animais , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular
11.
J Nanobiotechnology ; 11: 35, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24119372

RESUMO

BACKGROUND: Substrate nanoscale topography influences cell proliferation and differentiation through mechanisms that are at present poorly understood. In particular the molecular mechanism through which cells 'sense' and adapt to the substrate and activate specific intracellular signals, influencing cells survival and behavior, remains to be clarified. RESULTS: To characterize these processes at the molecular level we studied the differentiation of PC12 cells on nanostructured TiO2 films obtained by supersonic cluster beam deposition.Our findings indicate that, in PC12 cells grown without Nerve Growth Factor (NGF), the roughness of nanostructured TiO2 triggers neuritogenesis by activating the expression of nitric oxide synthase (NOS) and the phospho-extracellular signal-regulated kinase 1/2 (pERK1/2) signaling. Differentiation is associated with an increase in protein nitration as observed in PC12 cells grown on flat surfaces in the presence of NGF. We demonstrate that cell differentiation and protein nitration induced by topography are not specific for PC12 cells but can be regarded as generalized effects produced by the substrate on different neuronal-like cell types, as shown by growing the human neuroblastoma SH-SY5Y cell line on nanostructured TiO2. CONCLUSION: Our data provide the evidence that the nitric oxide (NO) signal cascade is involved in the differentiation process induced by nanotopography, adding new information on the mechanism and proteins involved in the neuritogenesis triggered by the surface properties.


Assuntos
Materiais Biocompatíveis/química , Mecanotransdução Celular , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Titânio/química , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Crescimento Neural/farmacologia , Neuritos/metabolismo , Neuritos/ultraestrutura , Óxido Nítrico Sintase Tipo II/genética , Células PC12 , Ratos , Propriedades de Superfície , Titânio/farmacologia , Tirosina/análogos & derivados , Tirosina/metabolismo
12.
Cells ; 12(2)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672231

RESUMO

Astrocytes' organisation affects the functioning and the fine morphology of the brain, both in physiological and pathological contexts. Although many aspects of their role have been characterised, their complex functions remain, to a certain extent, unclear with respect to their contribution to brain cell communication. Here, we studied the effects of nanotopography and microconfinement on primary hippocampal rat astrocytes. For this purpose, we fabricated nanostructured zirconia surfaces as homogenous substrates and as micrometric patterns, the latter produced by a combination of an additive nanofabrication and micropatterning technique. These engineered substrates reproduce both nanotopographical features and microscale geometries that astrocytes encounter in their natural environment, such as basement membrane topography, as well as blood vessels and axonal fibre topology. The impact of restrictive adhesion manifests in the modulation of several cellular properties of single cells (morphological and actin cytoskeletal changes) and the network organisation and functioning. Calcium wave signalling was observed only in astrocytes grown in confined geometries, with an activity enhancement in cells forming elongated agglomerates with dimensions typical of blood vessels or axon fibres. Our results suggest that calcium oscillation and wave propagation are closely related to astrocytic morphology and actin cytoskeleton organisation.


Assuntos
Astrócitos , Sinalização do Cálcio , Ratos , Animais , Astrócitos/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Hipocampo/metabolismo
13.
Traffic ; 11(10): 1304-14, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20604903

RESUMO

In neurons and neurosecretory (nerve) cells, neurite outgrowth requires surface enlargement sustained by exocytosis of specific but poorly characterized vesicles. A canonical, relatively slow form of outgrowth is known to require the v-SNARE Ti-VAMP. Recently, we have identified a new, rapid form, triggered by activation of Rac1 and sustained by the exocytosis of enlargeosomes (v-SNARE: VAMP4). By parallel study of various pheochromocytoma PC12 cell clones exhibiting either a single or both forms of outgrowth, we show that expression of enlargeosomes, their exocytosis at growth cones and their form of neurite outgrowth are positively governed by the RE-1 silencing transcription factor (REST), a repressor of many nerve cell-specific genes. Using a high REST/enlargeosome-rich PC12 clone transfected with TrkA, we found (i) that nerve growth factor (NGF) can increase the expression of both REST and the enlargeosome maker, Ahnak; and (ii) that outgrowth triggered by NGF, independent from the form triggered by Rac1 and supported mostly by exocytic, Ti-VAMP-positive organelles distinct from enlargeosomes, occurs at slow or fast rates depending on the strength of the TrkA signaling. These results confirm the duality of the outgrowth forms sustained by the two types of exocytic vesicles, reveal their distinct properties and identify new aspects of the REST impact in nerve cell specificity/function.


Assuntos
Exocitose , Cones de Crescimento/metabolismo , Neuritos/fisiologia , Proteínas Repressoras/metabolismo , Animais , Células Cultivadas , Neuritos/metabolismo , Células PC12 , Proteínas R-SNARE/metabolismo , Ratos
14.
J Cell Sci ; 123(Pt 2): 165-70, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026640

RESUMO

Neurite outgrowth is known as a slow (days) process occurring in nerve cells and neurons during neurotrophin treatment and upon transfer to culture, respectively. Using Y27632, a drug that induces activation of Rac1, a downstream step of the neurotrophin signaling cascade, we have identified a new form of outgrowth, which is rapid (<1 hour) and extensive (>500 microm(2) surface enlargement/single cell/first hour). However, this outgrowth takes place only in cells (PC12-27 and SH-SY5Y cells, and embryonic and neonatal neurons) rich in an exocytic organelle, the enlargeosome. Golgi vesicles, TGN vesicles and endosomes are not involved. The need for enlargeosomes for plasma-membrane expansion was confirmed by the appearance of their marker, Ahnak, at the cell surface and by the dependence of neurite outgrowth on VAMP4, the vSNARE of enlargeosome exocytosis. In enlargeosome-rich cells, VAMP4 downregulation also attenuated the slow outgrowth induced by nerve growth factor (NGF). Similar to NGF-induced neurite outgrowth in enlargeosome-lacking cells, the new, rapid, Y27632-induced process required microtubules. Other properties of neurite outgrowth in cells lacking enlargeosomes - such as dependence on VAMP7, on microfilaments, on gene transcription and on protein synthesis, and blockade of mitoses and accumulation of neuronal markers - were not evident. The enlargeosome-sustained process might be useful for the rapid neurite outgrowth at peculiar stages and/or conditions of nerve and neuronal cells. However, its properties and its physiological and pathological role remain to be investigated.


Assuntos
Exocitose , Neuritos/metabolismo , Sistemas Neurossecretores/citologia , Organelas/metabolismo , Amidas/farmacologia , Animais , Linhagem Celular , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/enzimologia , Proteínas de Neoplasias/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/enzimologia , Sistemas Neurossecretores/efeitos dos fármacos , Organelas/efeitos dos fármacos , Piridinas/farmacologia , Proteínas R-SNARE/metabolismo , Ratos , Proteínas rac1 de Ligação ao GTP/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
15.
Nanoscale ; 13(12): 6212-6226, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33885607

RESUMO

The crucial role of microtubules in the mitotic-related segregation of chromosomes makes them an excellent target for anticancer microtubule targeting drugs (MTDs) such as vinflunine (VFL), colchicine (COL), and docetaxel (DTX). MTDs affect mitosis by directly perturbing the structural organisation of microtubules. By a direct assessment of the biomechanical properties of prostate cancer DU145 cells exposed to different MTDs using atomic force microscopy, we show that cell stiffening is a response to the application of all the studied MTDs (VFL, COL, DTX). Changes in cellular rigidity are typically attributed to remodelling of the actin filaments in the cytoskeleton. Here, we demonstrate that cell stiffening can be driven by crosstalk between actin filaments and microtubules in MTD-treated cells. Our findings improve the interpretation of biomechanical data obtained for living cells in studies of various physiological and pathological processes.


Assuntos
Preparações Farmacêuticas , Neoplasias da Próstata , Citoesqueleto de Actina , Actinas , Citoesqueleto , Humanos , Masculino , Microtúbulos , Neoplasias da Próstata/tratamento farmacológico
16.
Micromachines (Basel) ; 12(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477416

RESUMO

The fabrication of in vitro neuronal cell networks where cells are chemically or electrically connected to form functional circuits with useful properties is of great interest. Standard cell culture substrates provide ensembles of cells that scarcely reproduce physiological structures since their spatial organization and connectivity cannot be controlled. Supersonic Cluster Beam Deposition (SCBD) has been used as an effective additive method for the large-scale fabrication of interfaces with extracellular matrix-mimicking surface nanotopography and reproducible morphological properties for cell culture. Due to the high collimation of SCBD, it is possible to exploit stencil masks for the fabrication of patterned films and reproduce features as small as tens of micrometers. Here, we present a protocol to fabricate micropatterned cell culture substrates based on the deposition of nanostructured cluster-assembled zirconia films by stencil-assisted SCBD. The effectiveness of this approach is demonstrated by the fabrication of micrometric patterns able to confine primary astrocytes. Calcium waves propagating in the astrocyte networks are shown.

17.
Cells ; 9(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053947

RESUMO

Embryonic and pluripotent stem cells hold great promise in generating ß-cells for both replacing medicine and novel therapeutic discoveries in diabetes mellitus. However, their differentiation in vitro is still inefficient, and functional studies reveal that most of these ß-like cells still fail to fully mirror the adult ß-cell physiology. For their proper growth and functioning, ß-cells require a very specific environment, the islet niche, which provides a myriad of chemical and physical signals. While the nature and effects of chemical stimuli have been widely characterized, less is known about the mechanical signals. We here review the current status of knowledge of biophysical cues provided by the niche where ß-cells normally live and differentiate, and we underline the possible machinery designated for mechanotransduction in ß-cells. Although the regulatory mechanisms remain poorly understood, the analysis reveals that ß-cells are equipped with all mechanosensors and signaling proteins actively involved in mechanotransduction in other cell types, and they respond to mechanical cues by changing their behavior. By engineering microenvironments mirroring the biophysical niche properties it is possible to elucidate the ß-cell mechanotransductive-regulatory mechanisms and to harness them for the promotion of ß-cell differentiation capacity in vitro.


Assuntos
Diferenciação Celular/genética , Forma Celular/genética , Células Secretoras de Insulina/citologia , Mecanotransdução Celular/genética , Fenômenos Biofísicos , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes/citologia
18.
Biophys Rev ; 11(5): 701-720, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31617079

RESUMO

Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.

19.
ACS Biomater Sci Eng ; 4(12): 4062-4075, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33418806

RESUMO

Artificially grown neuronal cultures of brain cells have been used for decades in the attempt to reproduce and study in vitro the complexity of brain circuits. It soon became evident that this alone was insufficient, because of the random architecture of these artificial networks. Important groundwork therefore resulted in the development of methods to confine neuronal adhesion at specific locations to match predefined network topologies and connectivity. Despite this notable progress in neural circuitry engineering, there is still need for micropatterned substrates that recapitulate better biophysical cues of the neuronal microenvironment, taking into account recent findings of their significance for neuronal differentiation and functioning. Here, we report the development and characterization of a novel approach that, by using supersonic cluster beam deposition of zirconia nanoparticles, allows the patterning of small nanostructured cell-adhesive areas according to predefined geometries onto elsewhere nonadhesive antifouling glass surfaces. As distinguishing features, compared to other micropatterning approaches in this context, the integrated nanostructured surfaces possess extracellular matrix-like nanotopographies of predetermined roughness; previously shown to be able to promote neuronal differentiation due to their impact on mechanotransductive processes, and can be used in their original state without any coating requirements. These micropatterned substrates were validated using (i) a neuron-like PC12 cell line and (ii) primary cultures of rat hippocampal neurons. After initial uniform plating, both neuronal cells types were found to converge and adhere specifically to the nanostructured regions. The cell-adhesive areas effectively confined cells, even when these were highly mobile and repeatedly attempted to cross boundaries. Inside these small permissive islands, cells grew and differentiated, in the case of the hippocampal neurons, up to the formation of mature, functionally active, and highly connected synaptic networks. In addition, when spontaneous instances of axon bridging between nearby dots occurred, a functional interdot communication between these subgroups of cells was observed.

20.
Front Cell Neurosci ; 11: 417, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354032

RESUMO

Neuronal cells are competent in precisely sensing nanotopographical features of their microenvironment. The perceived microenvironmental information will be "interpreted" by mechanotransductive processes and impacts on neuronal functioning and differentiation. Attempts to influence neuronal differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies are hampered by the fact that profound details of mechanosensing/-transduction complexity remain elusive. Introducing omics methods into these biomaterial approaches has the potential to provide a deeper insight into the molecular processes and signaling cascades underlying mechanosensing/-transduction but their exigence in cellular material is often opposed by technical limitations of major substrate top-down fabrication methods. Supersonic cluster beam deposition (SCBD) allows instead the bottom-up fabrication of nanostructured substrates over large areas characterized by a quantitatively controllable ECM-like nanoroughness that has been recently shown to foster neuron differentiation and maturation. Exploiting this capacity of SCBD, we challenged mechanosensing/-transduction and differentiative behavior of neuron-like PC12 cells with diverse nanotopographies and/or changes of their biomechanical status, and analyzed their phosphoproteomic profiles in these settings. Versatile proteins that can be associated to significant processes along the mechanotransductive signal sequence, i.e., cell/cell interaction, glycocalyx and ECM, membrane/f-actin linkage and integrin activation, cell/substrate interaction, integrin adhesion complex, actomyosin organization/cellular mechanics, nuclear organization, and transcriptional regulation, were affected. The phosphoproteomic data suggested furthermore an involvement of ILK, mTOR, Wnt, and calcium signaling in these nanotopography- and/or cell mechanics-related processes. Altogether, potential nanotopography-sensitive mechanotransductive signaling hubs participating in neuronal differentiation were dissected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA