Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 35(18): 2026-44, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27516442

RESUMO

There is great interest in therapeutically harnessing endogenous regenerative mechanisms to increase the number of ß cells in people with diabetes. By performing whole-genome expression profiling of zebrafish islets, we identified 11 secreted proteins that are upregulated during ß-cell regeneration. We then tested the proteins' ability to potentiate ß-cell regeneration in zebrafish at supraphysiological levels. One protein, insulin-like growth factor (Igf) binding-protein 1 (Igfbp1), potently promoted ß-cell regeneration by potentiating α- to ß-cell transdifferentiation. Using various inhibitors and activators of the Igf pathway, we show that Igfbp1 exerts its regenerative effect, at least partly, by inhibiting Igf signaling. Igfbp1's effect on transdifferentiation appears conserved across species: Treating mouse and human islets with recombinant IGFBP1 in vitro increased the number of cells co-expressing insulin and glucagon threefold. Moreover, a prospective human study showed that having high IGFBP1 levels reduces the risk of developing type-2 diabetes by more than 85%. Thus, we identify IGFBP1 as an endogenous promoter of ß-cell regeneration and highlight its clinical importance in diabetes.


Assuntos
Transdiferenciação Celular , Células Secretoras de Glucagon/fisiologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Regeneração , Animais , Humanos , Camundongos , Peixe-Zebra
2.
Diabetologia ; 58(10): 2403-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232096

RESUMO

AIMS/HYPOTHESIS: Zfp69 was previously identified by positional cloning as a candidate gene for obesity-associated diabetes. C57BL/6J and New Zealand obese (NZO) mice carry a loss-of-function mutation due to the integration of a retrotransposon. On the NZO background, the Zfp69 locus caused severe hyperglycaemia and loss of beta cells. To provide direct evidence for a causal role of Zfp69, we investigated the effects of its overexpression on both a lean [B6-Tg(Zfp69)] and an obese [NZO/B6-Tg(Zfp69)] background. METHODS: Zfp69 transgenic mice were generated by integrating the cDNA into the ROSA locus of the C57BL/6 genome and characterised. RESULTS: B6-Tg(Zfp69) mice were normoglycaemic, developed hyperinsulinaemia, and exhibited increased expression of G6pc and Pck1 and slightly reduced phospho-Akt levels in the liver. During OGTTs, glucose clearance was normal but insulin levels were significantly higher in the B6-Tg(Zfp69) than in control mice. The liver fat content and plasma triacylglycerol levels were significantly increased in B6-Tg(Zfp69) and NZO/B6-Tg(Zfp69) mice on a high-fat diet compared with controls. Liver transcriptome analysis of B6-Tg(Zfp69) mice revealed a downregulation of genes involved in glucose and lipid metabolism. Specifically, expression of Nampt, Lpin2, Map2k6, Gys2, Bnip3, Fitm2, Slc2a2, Ppargc1α and Insr was significantly decreased in the liver of B6-Tg(Zfp69) mice compared with wild-type animals. However, overexpression of Zfp69 did not induce overt diabetes with hyperglycaemia and beta cell loss. CONCLUSIONS/INTERPRETATION: Zfp69 mediates hyperlipidaemia, liver fat accumulation and mild insulin resistance. However, it does not induce type 2 diabetes, suggesting that the diabetogenic effect of the Zfp69 locus requires synergy with other as yet unidentified genes.


Assuntos
Fígado Gorduroso/genética , Hiperlipidemias/genética , Resistência à Insulina/genética , Fígado/metabolismo , Obesidade/genética , Fatores de Transcrição/genética , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Hiperlipidemias/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Obesidade/metabolismo , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo
3.
PLoS Genet ; 6(4): e1000916, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20421936

RESUMO

Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85x10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84x10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at approximately 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.


Assuntos
Peso Corporal/genética , Loci Gênicos , Genoma Humano , Obesidade/genética , Adolescente , Adulto , Idade de Início , Alelos , Índice de Massa Corporal , Criança , França/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alemanha/epidemiologia , Humanos , Obesidade/epidemiologia , Polimorfismo de Nucleotídeo Único
4.
Int J Mol Sci ; 14(9): 18989-98, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24065099

RESUMO

An appropriate insulin secretion by pancreatic beta-cells is necessary to maintain glucose homeostasis. A rise in plasma glucose leads to increased metabolism and an elevated cytoplasmic ATP/ADP ratio that finally triggers insulin granule exocytosis. In addition to this triggering pathway, one or more amplifying pathways-activated by amino acids or fatty acid-enhance secretion by promoting insulin granule recruitment to, and priming at, the plasma membrane. The aim of this study was to clarify the impact of the mitochondrial respiratory activity on fatty acid-induced insulin secretion that was assessed by an extracellular flux analyzer. Treatment of isolated mouse islets with glucose (20 mM) increased insulin secretion 18-fold and correlated with ATP-synthesizing respiration. Furthermore, oxygen consumption rate (OCR) significantly increased by 62% in response to glucose, whereas the addition of palmitate resulted only in a minor increase of OCR at both 2.8 mM (11%) and 20 mM glucose (21%). The addition of palmitate showed a pronounced increase of coupling efficiency (CE) at 2.8 mM glucose but no further insulin secretion. However, treatment with palmitate at 20 mM glucose increased insulin secretion about 32-fold accompanied by a small increase in CE. Thus, fatty acid induced respiration has a minor impact on insulin secretion. Our data clearly demonstrate that fatty acids in contrast to glucose play a minor role for respiration-mediated insulin secretion. In the presence of high glucose, fatty acids contribute partially to amplifying pathways of insulin secretion by further increasing mitochondrial activity in the islets of Langerhans.


Assuntos
Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácido Palmítico/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Glucose/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos
5.
PLoS Genet ; 5(7): e1000541, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19578398

RESUMO

Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT-PCR, and RACE-PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lep(ob) background, the diabetogenic Zfp69(SJL) allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes.


Assuntos
Clonagem Molecular , Diabetes Mellitus Tipo 2/genética , Obesidade/genética , Locos de Características Quantitativas , Fatores de Transcrição/genética , Tecido Adiposo/metabolismo , Animais , Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Dedos de Zinco
6.
Nat Metab ; 3(5): 682-700, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34031592

RESUMO

It is known that ß cell proliferation expands the ß cell mass during development and under certain hyperglycemic conditions in the adult, a process that may be used for ß cell regeneration in diabetes. Here, through a new high-throughput screen using a luminescence ubiquitination-based cell cycle indicator (LUCCI) in zebrafish, we identify HG-9-91-01 as a driver of proliferation and confirm this effect in mouse and human ß cells. HG-9-91-01 is an inhibitor of salt-inducible kinases (SIKs), and overexpression of Sik1 specifically in ß cells blocks the effect of HG-9-91-01 on ß cell proliferation. Single-cell transcriptomic analyses of mouse ß cells demonstrate that HG-9-91-01 induces a wave of activating transcription factor (ATF)6-dependent unfolded protein response (UPR) before cell cycle entry. Importantly, the UPR wave is not associated with an increase in insulin expression. Additional mechanistic studies indicate that HG-9-91-01 induces multiple signalling effectors downstream of SIK inhibition, including CRTC1, CRTC2, ATF6, IRE1 and mTOR, which integrate to collectively drive ß cell proliferation.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator 6 Ativador da Transcrição/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endorribonucleases/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Análise de Célula Única , Peixe-Zebra
7.
J Nutr Biochem ; 19(9): 594-603, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18155510

RESUMO

Gene expression and activity of matrix-metalloproteinases (MMP)-2 and -9 in macrophages are reduced through peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent inhibition of NF-kappaB. Since conjugated linoleic acids (CLAs) are PPARgamma ligands and known to inhibit NF-kappaB via PPARgamma, we studied whether CLA isomers are capable of reducing gene expression and gelatinolytic activity of MMP-2 and -9 in PMA-differentiated THP-1 macrophages, which has not yet been investigated. Incubation of PMA-differentiated THP-1 cells with either c9t11-CLA, t10c12-CLA or linoleic acid (LA), as a reference fatty acid, resulted in a significant incorporation of the respective fatty acids into total cell lipids relative to control cells (P<.05). Treatment of PMA-differentiated THP-1 cells with 10 and 20 micromol/L troglitazone but not with 10 or 100 micromol/L c9t11-CLA, t10c12-CLA or LA reduced relative mRNA concentrations and activity of MMP-2 and MMP-9 compared to control cells (P<.05). DNA-binding activity of NF-kappaB and PPARgamma and mRNA expression of the NF-kappaB target gene cPLA2 were not influenced by treatment with CLA. In contrast, treatment of PMA-differentiated THP-1 cells with troglitazone significantly increased transactivation of PPARgamma and decreased DNA-binding activity of NF-kappaB and relative mRNA concentration of cPLA2 relative to control cells (P<.05). In conclusion, the present study revealed that CLA isomers, in contrast to troglitazone, did not reduce gene expression and activity of MMP-2 and -9 in PMA-differentiated THP-1 macrophages, which is probably explained by the observation that CLA isomers neither activated PPARgamma nor reduced DNA-binding activity of NF-kappaB. This suggests that CLA isomers are ineffective in MMP-associated extracellular matrix degradation which is thought to contribute to the progression and rupture of advanced atherosclerotic plaques.


Assuntos
Cromanos/farmacologia , Expressão Gênica/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Tiazolidinedionas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Metabolismo dos Lipídeos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , NF-kappa B/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Troglitazona
8.
Lab Anim ; 52(6): 611-620, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29629617

RESUMO

Concerning standardization of laboratory animal husbandry, only exiguous changes of habitat can potentially influence animal physiology or results of behavioral tests. Routinely, mice chow is dyed when different types of diets are dispensed. Given the fact that the dye itself has no effects on food odor or flavor, we wanted to test the hypothesis that the color of chow has an impact on food uptake in mice. Twelve-week-old male mice of different strains (C57BL/6J, DBA/2J, C3H/HeJ, BALB/cJ; n = 12/strain) were single-housed in PhenoMaster® cages. After acclimatization standard mice chow in different colors was administered. Food intake was monitored as a two-alternative choice test of different color combinations. All animals had an average food intake of 3 g/d and no preferences were observed when a combination of identically colored food was offered. Preference tests yielded significant aversion to blue food and significant attraction to yellow and green food in C57BL/6 and DBA/2J mice. In C3H/HeJ and BALB/cJ mice no color-related pattern occurred. Selected mice strains have known differences concerning functionality of their visual sense. C57BL/6 and DBA/2 mice are considered to be normal sighted at testing age, BALB/c is representative for albino strains and C3H mice carry mutations resulting in retinal alterations. Results suggesting that normal-sighted mice would be selective concerning food color when given the choice. Nevertheless, this does not influence overall quantity of food intake when animals were provided solely with food colored with a single dye. Moreover, visually impaired mice showed no color-related food preferences.


Assuntos
Comportamento Animal , Comportamento de Escolha , Cor , Ingestão de Alimentos , Criação de Animais Domésticos , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C/fisiologia , Camundongos Endogâmicos C3H/fisiologia , Camundongos Endogâmicos C57BL/fisiologia , Camundongos Endogâmicos DBA/fisiologia
9.
Mol Metab ; 5(11): 1138-1146, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27818940

RESUMO

OBJECTIVE: Pharmacological activation of adenosine signaling has been shown to increase ß-cell proliferation and thereby ß-cell regeneration in zebrafish and rodent models of diabetes. However, whether adenosine has an endogenous role in regulating ß-cell proliferation is unknown. The objective of this study was to determine whether endogenous adenosine regulates ß-cell proliferation-either in the basal state or states of increased demand for insulin-and to delineate the mechanisms involved. METHODS: We analyzed the effect of pharmacological adenosine agonists on ß-cell proliferation in in vitro cultures of mouse islets and in zebrafish models with ß- or δ-cell ablation. In addition, we performed physiological and histological characterization of wild-type mice and mutant mice with pancreas- or ß-cell-specific deficiency in Adora2a (the gene encoding adenosine receptor A2a). The mutant mice were used for in vivo studies on the role of adenosine in the basal state and during pregnancy (a state of increased demand for insulin), as well as for in vitro studies of cultured islets. RESULTS: Pharmacological adenosine signaling in zebrafish had a stronger effect on ß-cell proliferation during ß-cell regeneration than in the basal state, an effect that was independent of the apoptotic microenvironment of the regeneration model. In mice, deficiency in Adora2a impaired glucose control and diminished compensatory ß-cell proliferation during pregnancy but did not have any overt phenotype in the basal state. Islets isolated from Adora2a-deficient mice had a reduced baseline level of ß-cell proliferation in vitro, consistent with our finding that UK432097, an A2a-specific agonist, promotes the proliferation of mouse ß-cells in vitro. CONCLUSIONS: This is the first study linking endogenously produced adenosine to ß-cell proliferation. Moreover, we show that adenosine signaling via the A2a receptor has an important role in compensatory ß-cell proliferation, a feature that could be harnessed pharmacologically for ß-cell expansion and future therapeutic development for diabetes.


Assuntos
Proliferação de Células , Células Secretoras de Insulina/fisiologia , Receptor A2A de Adenosina/fisiologia , Adenosina , Animais , Feminino , Insulina , Camundongos , Gravidez , Receptor A2A de Adenosina/genética
10.
J Clin Invest ; 126(7): 2706-20, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27322061

RESUMO

In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer's disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA.


Assuntos
Adipócitos/metabolismo , Variação Genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Obesidade/genética , Receptor de Insulina/metabolismo , Receptores de LDL/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD/metabolismo , Modelos Animais de Doenças , Feminino , Dosagem de Genes , Estudo de Associação Genômica Ampla , Glucose/química , Humanos , Hidrólise , Insulina/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Fatores de Risco , Transdução de Sinais , Triglicerídeos/metabolismo , Adulto Jovem
11.
Mol Cell Biol ; 34(2): 290-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24216763

RESUMO

The homeodomain transcription factor Prep1 was previously shown to regulate insulin sensitivity. Our aim was to study the specific role of Prep1 for the regulation of energy metabolism in skeletal muscle. Muscle-specific ablation of Prep1 resulted in increased expression of respiratory chain subunits. This finding was consistent with an increase in mitochondrial enzyme activity without affecting mitochondrial volume fraction as assessed by electron microscopy. Metabolic phenotyping revealed no differences in daily energy expenditure or body composition. However, during treadmill exercise challenge, Prep1 ablation resulted in a higher maximal oxidative capacity and better endurance. Elevated PGC-1α expression was identified as a cause for increased mitochondrial capacity in Prep1 ablated mice. Prep1 stabilizes p160 Mybbp1a, a known inhibitor of PGC-1α activity. Thereby, p160 protein levels were significantly lower in the muscle of Prep1 ablated mice. By a chromatin immunoprecipitation-sequencing (ChIP-seq) approach, PREP1 binding sites in genes encoding mitochondrial components (e.g., Ndufs2) were identified that might be responsible for elevated proteins involved in oxidative phosphorylation (OXPHOS) in the muscle of Prep1 null mutants. These results suggest that Prep1 exhibits additional direct effects on regulation of mitochondrial proteins. We therefore conclude that Prep1 is a regulator of oxidative phosphorylation components via direct and indirect mechanisms.


Assuntos
Proteínas de Homeodomínio/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenótipo , Resistência Física , Regiões Promotoras Genéticas , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
12.
PLoS One ; 9(3): e92358, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643026

RESUMO

OBJECTIVES: Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model. METHODS: Cinnamon components (eugenol, cinnamaldehyde) were added to astrocytes and liver cells to measure insulin signaling and glycogen synthesis. Ob/ob mice were supplemented with extract from cinnamomum zeylanicum for 6 weeks and cortical brain activity, locomotion and energy expenditure were evaluated. Insulin action was determined in brain and liver tissues. RESULTS: Treatment of primary astrocytes with eugenol promoted glycogen synthesis, whereas the effect of cinnamaldehyde was attenuated. In terms of brain function in vivo, cinnamon extract improved insulin sensitivity and brain activity in ob/ob mice, and the insulin-stimulated locomotor activity was improved. In addition, fasting blood glucose levels and glucose tolerance were greatly improved in ob/ob mice due to cinnamon extracts, while insulin secretion was unaltered. This corresponded with lower triglyceride and increased liver glycogen content and improved insulin action in liver tissues. In vitro, Fao cells exposed to cinnamon exhibited no change in insulin action. CONCLUSIONS: Together, cinnamon extract improved insulin action in the brain as well as brain activity and locomotion. This specific effect may represent an important central feature of cinnamon in improving insulin action in the brain, and mediates metabolic alterations in the periphery to decrease liver fat and improve glucose homeostasis.


Assuntos
Acroleína/análogos & derivados , Encéfalo/efeitos dos fármacos , Eugenol/farmacologia , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Acroleína/farmacologia , Acroleína/uso terapêutico , Adiposidade/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Cinnamomum zeylanicum/química , Ingestão de Energia , Eugenol/uso terapêutico , Glicogênio/biossíntese , Humanos , Insulina/administração & dosagem , Insulina/fisiologia , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Atividade Motora/efeitos dos fármacos , Obesidade/tratamento farmacológico , Extratos Vegetais/uso terapêutico
13.
Endocrinology ; 152(12): 4641-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21990309

RESUMO

Dysregulation of fatty acid oxidation plays a pivotal role in the pathophysiology of obesity and insulin resistance. Medium- and short-chain-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (SCHAD) (gene name, hadh) catalyze the third reaction of the mitochondrial ß-oxidation cascade, the oxidation of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, for medium- and short-chain fatty acids. We identified hadh as a putative obesity gene by comparison of two genome-wide scans, a quantitative trait locus analysis previously performed in the polygenic obese New Zealand obese mouse and an earlier described small interfering RNA-mediated mutagenesis in Caenorhabditis elegans. In the present study, we show that mice lacking SCHAD (hadh(-/-)) displayed a lower body weight and a reduced fat mass in comparison with hadh(+/+) mice under high-fat diet conditions, presumably due to an impaired fuel efficiency, the loss of acylcarnitines via the urine, and increased body temperature. Food intake, total energy expenditure, and locomotor activity were not altered in knockout mice. Hadh(-/-) mice exhibited normal fat tolerance at 20 C. However, during cold exposure, knockout mice were unable to clear triglycerides from the plasma and to maintain their normal body temperature, indicating that SCHAD plays an important role in adaptive thermogenesis. Blood glucose concentrations in the fasted and postprandial state were significantly lower in hadh(-/-) mice, whereas insulin levels were elevated. Accordingly, insulin secretion in response to glucose and glucose plus palmitate was elevated in isolated islets of knockout mice. Therefore, our data indicate that SCHAD is involved in thermogenesis, in the maintenance of body weight, and in the regulation of nutrient-stimulated insulin secretion.


Assuntos
Acil-CoA Desidrogenase/fisiologia , Peso Corporal , Butiril-CoA Desidrogenase/fisiologia , Insulina/metabolismo , Termogênese , Animais , Glicemia , Temperatura Baixa , Metabolismo Energético , Secreção de Insulina , Camundongos , Camundongos Knockout , Triglicerídeos/sangue
14.
Aging (Albany NY) ; 2(10): 650-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20876939

RESUMO

Reduced telomere length and impaired telomerase activity have been linked to several diseases associated with senescence and aging. However, a causal link to metabolic disorders and in particular diabetes mellitus is pending. We here show that young adult mice which are deficient for the Terc subunit of telomerase exhibit impaired glucose tolerance. This is caused by impaired glucose-stimulated insulin secretion (GSIS) from pancreatic islets, while body fat content, energy expenditure and insulin sensitivity were found to be unaltered. The impaired secretion capacity for insulin is due to reduced islet size which is linked to an impaired replication capacity of insulin-producing beta-cells in Terc-deficient mice. Taken together, telomerase deficiency and hence short telomeres impair replicative capacity of pancreatic beta-cells to cause impaired insulin secretion and glucose intolerance, mechanistically defining diabetes mellitus as an aging-associated disorder.


Assuntos
Glicemia/metabolismo , Intolerância à Glucose/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Telomerase/deficiência , Animais , Glicemia/efeitos dos fármacos , Composição Corporal/genética , Dióxido de Carbono/metabolismo , Proliferação de Células , Metabolismo Energético/genética , Teste de Tolerância a Glucose , Insulina/sangue , Insulina/farmacologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Lipídeos/sangue , Camundongos , Camundongos Knockout , Oxirredução , RNA/genética , Telomerase/genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA