Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905635

RESUMO

The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) AML cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent anti-proliferative activity across several AML and ALL cell lines and patient samples harboring KMT2A- or NPM1-alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent anti-proliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A co-crystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory (R/R) acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).

2.
Biophys J ; 123(12): 1592-1609, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38702882

RESUMO

Sensing of the biophysical properties of membranes using molecular reporters has recently regained widespread attention. This was elicited by the development of new probes of exquisite optical properties and increased performance, combined with developments in fluorescence detection. Here, we report on fluorescence lifetime imaging of various rigid and flexible fluorescent dyes to probe the biophysical properties of synthetic and biological membranes at steady state as well as upon the action of external membrane-modifying agents. We tested the solvatochromic dyes Nile red and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (NBD), the viscosity sensor Bodipy C12, the flipper dye FliptR, as well as the dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), Bodipy C16, lissamine-rhodamine, and Atto647, which are dyes with no previous reported environmental sensitivity. The performance of the fluorescent probes, many of which are commercially available, was benchmarked with well-known environmental reporters, with Nile red and Bodipy C12 being specific reporters of medium hydration and viscosity, respectively. We show that some widely used ordinary dyes with no previous report of sensing capabilities can exhibit competing performance compared to highly sensitive commercially available or custom-based solvatochromic dyes, molecular rotors, or flipper in a wide range of biophysics experiments. Compared to other methods, fluorescence lifetime imaging is a minimally invasive and nondestructive method with optical resolution. It enables biophysical mapping at steady state or assessment of the changes induced by membrane-active molecules at subcellular level in both synthetic and biological membranes when intensity measurements fail to do so. The results have important consequences for the specific choice of the sensor and take into consideration factors such as probe sensitivity, response to environmental changes, ease and speed of data analysis, and the probe's intracellular distribution, as well as potential side effects induced by labeling and imaging.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Membrana Celular/química , Membrana Celular/metabolismo
3.
Br J Haematol ; 204(6): 2287-2300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651345

RESUMO

Despite advancements in utilizing genetic markers to enhance acute myeloid leukaemia (AML) outcome prediction, significant disease heterogeneity persists, hindering clinical management. To refine survival predictions, we assessed the transcriptome of non-acute promyelocytic leukaemia chemotherapy-treated AML patients from five cohorts (n = 975). This led to the identification of a 4-gene prognostic index (4-PI) comprising CYP2E1, DHCR7, IL2RA and SQLE. The 4-PI effectively stratified patients into risk categories, with the high 4-PI group exhibiting TP53 mutations and cholesterol biosynthesis signatures. Single-cell RNA sequencing revealed enrichment for leukaemia stem cell signatures in high 4-PI cells. Validation across three cohorts (n = 671), including one with childhood AML, demonstrated the reproducibility and clinical utility of the 4-PI, even using cost-effective techniques like real-time quantitative polymerase chain reaction. Comparative analysis with 56 established prognostic indexes revealed the superior performance of the 4-PI, highlighting its potential to enhance AML risk stratification. Finally, the 4-PI demonstrated to be potential marker to reclassified patients from the intermediate ELN2017 category to the adverse category. In conclusion, the 4-PI emerges as a robust and straightforward prognostic tool to improve survival prediction in AML patients.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/diagnóstico , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Adulto , Idoso , Transcriptoma , Adolescente , Criança
4.
Blood ; 140(19): 2037-2052, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35984907

RESUMO

Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking. H3K36me3 was consistently the most heavily impacted mark following loss of methionine. Methionine depletion also reduced total RNA levels, enhanced apoptosis, and induced a cell cycle block. Reactive oxygen species levels were not increased following methionine depletion, and replacement of methionine with glutathione or N-acetylcysteine could not rescue phenotypes, excluding a role for methionine in controlling redox balance control in AML. Although considered to be an essential amino acid, methionine can be recycled from homocysteine. We uncovered that this is primarily performed by the enzyme methionine synthase and only when methionine availability becomes limiting. In vivo, dietary methionine starvation was not only tolerated by mice, but also significantly delayed both cell line and patient-derived AML progression. Finally, we show that inhibition of the H3K36-specific methyltransferase SETD2 phenocopies much of the cytotoxic effects of methionine depletion, providing a more targeted therapeutic approach. In conclusion, we show that methionine depletion is a vulnerability in AML that can be exploited therapeutically, and we provide mechanistic insight into how cells metabolize and recycle methionine.


Assuntos
Leucemia Mieloide Aguda , Metionina , Camundongos , Animais , Leucemia Mieloide Aguda/patologia , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/uso terapêutico , Histonas/metabolismo , Racemetionina
5.
Br J Haematol ; 200(2): 170-174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263593

RESUMO

Although a growing body of evidence demonstrates that altered mtDNA content (mtDNAc) has clinical implications in several types of solid tumours, its prognostic relevance in acute promyelocytic leukaemia (APL) patients remains largely unknown. Here, we show that patients with higher-than-normal mtDNAc had better outcomes regardless of tumour burden. These results were more evident in patients with low-risk of relapse. The multivariate Cox proportional hazard model demonstrated that high mtDNAc was independently associated with a decreased cumulative incidence of relapse. Altogether, our data highlights the possible role of mitochondrial metabolism in APL patients treated with ATRA.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Tretinoína/uso terapêutico , DNA Mitocondrial/genética , Relevância Clínica , Recidiva Local de Neoplasia/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento
6.
Mol Cell Proteomics ; 20: 100091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33971369

RESUMO

Non-T cell activation linker (NTAL) membrane protein depletion from lipid rafts by alkylphospholipids or downregulation by shRNA knockdown decreases cell viability through regulation of the Akt/PI3K pathway in mantle cell lymphoma and acute promyelocytic leukemia cells. Here, we confirmed that the knockdown of NTAL in acute myeloid leukemia (AML) cell lines was associated with decreased cell proliferation and survival. Similarly, a xenograft model using AML cells transduced with NTAL-shRNA and transplanted into immunodeficient mice led to a 1.8-fold decrease in tumor burden. Using immunoprecipitation, LC-MS/MS analysis, and label-free protein quantification, we identified interactors of NTAL in two AML cell lines. By evaluating the gene expression signatures of the NTAL protein interactors using the PREdiction of Clinical Outcomes from Genomic Profiles database, we found that 12 NTAL interactors could predict overall survival in AML, in at least two independent cohorts. In addition, patients with AML exhibiting a high expression of NTAL and its interactors were associated with a leukemic granulocyte-macrophage progenitor-like state. Taken together, our data provide evidence that NTAL and its protein interactors are relevant to AML cell proliferation and survival and represent potential therapeutic targets for granulocyte-macrophage progenitor-like leukemias.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Sobrevida , Transcriptoma
7.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901846

RESUMO

Previous studies have reported an association between ABO type blood group and cardiovascular (CV) events and outcomes. The precise mechanisms underpinning this striking observation remain unknown, although differences in von Willebrand factor (VWF) plasma levels have been proposed as an explanation. Recently, galectin-3 was identified as an endogenous ligand of VWF and red blood cells (RBCs) and, therefore, we aimed to explore the role of galectin-3 in different blood groups. Two in vitro assays were used to assess the binding capacity of galectin-3 to RBCs and VWF in different blood groups. Additionally, plasma levels of galectin-3 were measured in different blood groups in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study (2571 patients hospitalized for coronary angiography) and validated in a community-based cohort of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study (3552 participants). To determine the prognostic value of galectin-3 in different blood groups, logistic regression and cox regression models were used with all-cause mortality as the primary outcome. First, we demonstrated that galectin-3 has a higher binding capacity for RBCs and VWF in non-O blood groups, compared to blood group O. Additionally, LURIC patients with non-O blood groups had substantially lower plasma levels of galectin-3 (15.0, 14.9, and 14.0 µg/L in blood groups A, B, and AB, respectively, compared to 17.1 µg/L in blood group O, p < 0.0001). Finally, the independent prognostic value of galectin-3 for all-cause mortality showed a non-significant trend towards higher mortality in non-O blood groups. Although plasma galectin-3 levels are lower in non-O blood groups, the prognostic value of galectin-3 is also present in subjects with a non-O blood group. We conclude that physical interaction between galectin-3 and blood group epitopes may modulate galectin-3, which may affect its performance as a biomarker and its biological activity.


Assuntos
Galectina 3 , Fator de von Willebrand , Humanos , Fator de von Willebrand/metabolismo , Prognóstico , Sistema ABO de Grupos Sanguíneos , Rim/metabolismo
8.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069220

RESUMO

Phosphatidylinositol-5-phosphate 4-kinase type 2 (PIP4K2) protein family members (PIP4K2A, PIP4K2B, and PIP4K2C) participate in the generation of PIP4,5P2, which acts as a secondary messenger in signal transduction, a substrate for metabolic processes, and has structural functions. In patients with acute myeloid leukemia (AML), high PIP4K2A and PIP4K2C levels are independent markers of a worse prognosis. Recently, our research group reported that THZ-P1-2 (PIP4K2 pan-inhibitor) exhibits anti-leukemic activity by disrupting mitochondrial homeostasis and autophagy in AML models. In the present study, we characterized the expression of PIP4K2 in the myeloid compartment of hematopoietic cells, as well as in AML cell lines and clinical samples with different genetic abnormalities. In ex vivo assays, PIP4K2 expression levels were related to sensitivity and resistance to several antileukemia drugs and highlighted the association between high PIP4K2A levels and resistance to venetoclax. The combination of THZ-P1-2 and venetoclax showed potentiating effects in reducing viability and inducing apoptosis in AML cells. A combined treatment differentially modulated multiple genes, including TAp73, BCL2, MCL1, and BCL2A1. In summary, our study identified the correlation between the expression of PIP4K2 and the response to antineoplastic agents in ex vivo assays in AML and exposed vulnerabilities that may be exploited in combined therapies, which could result in better therapeutic responses.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/farmacologia
11.
Blood ; 128(25): 2949-2959, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27733356

RESUMO

To begin to understand the mechanisms that regulate self-renewal, differentiation, and transformation of human hematopoietic stem cells or to evaluate the efficacy of novel treatment modalities, stem cells need to be studied in their own species-specific microenvironment. By implanting ceramic scaffolds coated with human mesenchymal stromal cells into immune-deficient mice, we were able to mimic the human bone marrow niche. Thus, we have established a human leukemia xenograft mouse model in which a large cohort of patient samples successfully engrafted, which covered all of the important genetic and risk subgroups. We found that by providing a humanized environment, stem cell self-renewal properties were better maintained as determined by serial transplantation assays and genome-wide transcriptome studies, and less clonal drift was observed as determined by exome sequencing. The human leukemia xenograft mouse models that we have established here will serve as an excellent resource for future studies aimed at exploring novel therapeutic approaches.


Assuntos
Medula Óssea/patologia , Leucemia Mieloide Aguda/patologia , Nicho de Células-Tronco , Alicerces Teciduais/química , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Autorrenovação Celular , Separação Celular , Células Clonais , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Leucemia Mieloide Aguda/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Fenótipo , Células Estromais/patologia
12.
Stem Cells ; 34(6): 1651-63, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26930546

RESUMO

Autophagy is a highly regulated catabolic process that involves sequestration and lysosomal degradation of cytosolic components such as damaged organelles and misfolded proteins. While autophagy can be considered to be a general cellular housekeeping process, it has become clear that it may also play cell type-dependent functional roles. In this study, we analyzed the functional importance of autophagy in human hematopoietic stem/progenitor cells (HSPCs), and how this is regulated during differentiation. Western blot-based analysis of LC3-II and p62 levels, as well as flow cytometry-based autophagic vesicle quantification, demonstrated that umbilical cord blood-derived CD34(+) /CD38(-) immature hematopoietic progenitors show a higher autophagic flux than CD34(+) /CD38(+) progenitors and more differentiated myeloid and erythroid cells. This high autophagic flux was critical for maintaining stem and progenitor function since knockdown of autophagy genes ATG5 or ATG7 resulted in reduced HSPC frequencies in vitro as well as in vivo. The reduction in HSPCs was not due to impaired differentiation, but at least in part due to reduced cell cycle progression and increased apoptosis. This is accompanied by increased expression of p53, proapoptotic genes BAX and PUMA, and the cell cycle inhibitor p21, as well as increased levels of cleaved caspase-3 and reactive oxygen species. Taken together, our data demonstrate that autophagy is an important regulatory mechanism for human HSCs and their progeny, reducing cellular stress and promoting survival. Stem Cells 2016;34:1651-1663.


Assuntos
Antígenos CD34/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Autofagia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Apoptose , Contagem de Células , Ciclo Celular , Diferenciação Celular , Sangue Fetal/citologia , Técnicas de Silenciamento de Genes , Humanos , Espaço Intracelular/metabolismo , Camundongos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Blood ; 124(20): 3130-40, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25287709

RESUMO

Development and maintenance of leukemia can be partially attributed to alterations in (anti)-apoptotic gene expression. Genome-wide transcriptome analyses revealed that 89 apoptosis-associated genes were differentially expressed between patient acute myeloid leukemia (AML) CD34(+) cells and normal bone marrow (NBM) CD34(+) cells. Among these, transforming growth factor-ß activated kinase 1 (TAK1) was strongly upregulated in AML CD34(+) cells. Genetic downmodulation or pharmacologic inhibition of TAK1 activity strongly impaired primary AML cell survival and cobblestone formation in stromal cocultures. TAK1 inhibition was mainly due to blockade of the nuclear factor κB (NF-κB) pathway, as TAK1 inhibition resulted in reduced levels of P-IκBα and p65 activity. Overexpression of a constitutive active variant of NF-κB partially rescued TAK1-depleted cells from apoptosis. Importantly, NBM CD34(+) cells were less sensitive to TAK1 inhibition compared with AML CD34(+) cells. Knockdown of TAK1 also severely impaired leukemia development in vivo and prolonged overall survival in a humanized xenograft mouse model. In conclusion, our results indicate that TAK1 is frequently overexpressed in AML CD34(+) cells, and that TAK1 inhibition efficiently targets leukemic stem/progenitor cells in an NF-κB-dependent manner.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , MAP Quinase Quinase Quinases/genética , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Terapia Genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Terapia de Alvo Molecular , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/análise , Transcriptoma
14.
Haematologica ; 101(2): 115-208, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26819058

RESUMO

The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.


Assuntos
Terapia Combinada/métodos , Terapia Genética/métodos , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/terapia , Hematologia/métodos , Terapia de Alvo Molecular/métodos , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Terapia Combinada/economia , Consenso , Europa (Continente) , Perfilação da Expressão Gênica , Terapia Genética/economia , Genoma Humano , Serviços de Saúde para Idosos/provisão & distribuição , Doenças Hematológicas/economia , Doenças Hematológicas/patologia , Hematologia/economia , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Terapia de Alvo Molecular/economia
15.
Blood ; 121(13): 2452-61, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23349393

RESUMO

The Polycomb group (PcG) protein BMI1 is a key factor in regulating hematopoietic stem cell (HSC) and leukemic stem cell self-renewal and functions in the context of the Polycomb repressive complex 1 (PRC1). In humans, each of the 5 subunits of PRC1 has paralog family members of which many reside in PRC1 complexes, likely in a mutually exclusive manner, pointing toward a previously unanticipated complexity of Polycomb-mediated silencing. We used an RNA interference screening approach to test the functionality of these paralogs in human hematopoiesis. Our data demonstrate a lack of redundancy between various paralog family members, suggestive of functional diversification between PcG proteins. By using an in vivo biotinylation tagging approach followed by liquid chromatography-tandem mass spectrometry to identify PcG interaction partners, we confirmed the existence of multiple specific PRC1 complexes. We find that CBX2 is a nonredundant CBX paralog vital for HSC and progenitor function that directly regulates the expression of the cyclin-dependent kinase inhibitor p21, independently of BMI1 that dominantly controls expression of the INK4A/ARF locus. Taken together, our data show that different PRC1 paralog family members have nonredundant and locus-specific gene regulatory activities that are essential for human hematopoiesis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Inativação Gênica , Loci Gênicos/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Feminino , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica/fisiologia , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Recém-Nascido , Família Multigênica/genética , Família Multigênica/fisiologia , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Homologia de Sequência , Especificidade por Substrato/genética
16.
Mol Cell Proteomics ; 12(3): 626-37, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23233446

RESUMO

Interactions between hematopoietic stem cells and their niche are mediated by proteins within the plasma membrane (PM) and changes in these interactions might alter hematopoietic stem cell fate and ultimately result in acute myeloid leukemia (AML). Here, using nano-LC/MS/MS, we set out to analyze the PM profile of two leukemia patient samples. We identified 867 and 610 unique CD34(+) PM (-associated) proteins in these AML samples respectively, including previously described proteins such as CD47, CD44, CD135, CD96, and ITGA5, but also novel ones like CD82, CD97, CD99, PTH2R, ESAM, MET, and ITGA6. Further validation by flow cytometry and functional studies indicated that long-term self-renewing leukemic stem cells reside within the CD34(+)/ITGA6(+) fraction, at least in a subset of AML cases. Furthermore, we combined proteomics with transcriptomics approaches using a large panel of AML CD34(+) (n = 60) and normal bone marrow CD34(+) (n = 40) samples. Thus, we identified eight subgroups of AML patients based on their specific PM expression profile. GSEA analysis revealed that these eight subgroups are enriched for specific cellular processes.


Assuntos
Perfilação da Expressão Gênica/métodos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteômica/métodos , Doença Aguda , Antígenos CD34/genética , Antígenos CD34/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida , Citometria de Fluxo , Regulação Leucêmica da Expressão Gênica , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Nanotecnologia/métodos , Análise de Componente Principal , Proteoma/análise , Espectrometria de Massas em Tandem
17.
Biol Blood Marrow Transplant ; 20(6): 865-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24607555

RESUMO

Most of our knowledge of the effects of aging on the hematopoietic system comes from studies in animal models. In this study, to explore potential effects of aging on human hematopoietic stem and progenitor cells (HSPCs), we evaluated CD34(+) cells derived from young (<35 years) and old (>60 years) adult bone marrow with respect to phenotype and in vitro function. We observed an increased frequency of phenotypically defined stem and progenitor cells with age, but no distinct differences with respect to in vitro functional capacity. Given that regeneration of peripheral blood counts can serve as a functional readout of HSPCs, we compared various peripheral blood parameters between younger patients (≤50 years; n = 64) and older patients (≥60 years; n = 55) after autologous stem cell transplantation. Patient age did not affect the number of apheresis cycles or the amount of CD34(+) cells harvested. Parameters for short-term regeneration did not differ significantly between the younger and older patients; however, complete recovery of all 3 blood lineages at 1 year after transplantation was strongly affected by advanced age, occurring in only 29% of the older patients, compared with 56% of the younger patients (P = .009). Collectively, these data suggest that aging has only limited effects on CD34(+) HSPCs under steady-state conditions, but can be important under consitions of chemotoxic and replicative stress.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/fisiologia , Adulto , Fatores Etários , Antígenos CD34/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Estudos de Coortes , Feminino , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/terapia , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/terapia , Transplante Autólogo , Adulto Jovem
19.
Blood ; 120(3): e9-e16, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22653974

RESUMO

Interactions within the hematopoietic niche in the BM microenvironment are essential for maintenance of the stem cell pool. In addition, this niche is thought to serve as a sanctuary site for malignant progenitors during chemotherapy. Therapy resistance induced by interactions with the BM microenvironment is a major drawback in the treatment of hematologic malignancies and bone-metastasizing solid tumors. To date, studying these interactions was hampered by the lack of adequate in vivo models that simulate the human situation. In the present study, we describe a unique human-mouse hybrid model that allows engraftment and outgrowth of normal and malignant hematopoietic progenitors by implementing a technology for generating a human bone environment. Using luciferase gene marking of patient-derived multiple myeloma cells and bioluminescent imaging, we were able to follow pMM cells outgrowth and to visualize the effect of treatment. Therapeutic interventions in this model resulted in equivalent drug responses as observed in the corresponding patients. This novel human-mouse hybrid model creates unprecedented opportunities to investigate species-specific microenvironmental influences on normal and malignant hematopoietic development, and to develop and personalize cancer treatment strategies.


Assuntos
Células-Tronco Hematopoéticas/citologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Nicho de Células-Tronco/imunologia , Quimeras de Transplante/imunologia , Microambiente Tumoral/imunologia , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Ossículos da Orelha/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Camundongos , Camundongos Mutantes , Transplante de Neoplasias , Osteólise/imunologia , Alicerces Teciduais , Transplante Heterólogo
20.
Blood Adv ; 8(1): 56-69, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37906522

RESUMO

ABSTRACT: Cysteine is a nonessential amino acid required for protein synthesis, the generation of the antioxidant glutathione, and for synthesizing the nonproteinogenic amino acid taurine. Here, we highlight the broad sensitivity of leukemic stem and progenitor cells to cysteine depletion. By CRISPR/CRISPR-associated protein 9-mediated knockout of cystathionine-γ-lyase, the cystathionine-to-cysteine converting enzyme, and by metabolite supplementation studies upstream of cysteine, we functionally prove that cysteine is not synthesized from methionine in acute myeloid leukemia (AML) cells. Therefore, although perhaps nutritionally nonessential, cysteine must be imported for survival of these specific cell types. Depletion of cyst(e)ine increased reactive oxygen species (ROS) levels, and cell death was induced predominantly as a consequence of glutathione deprivation. nicotinamide adenine dinucleotide phosphate hydrogen oxidase inhibition strongly rescued viability after cysteine depletion, highlighting this as an important source of ROS in AML. ROS-induced cell death was mediated via ferroptosis, and inhibition of glutathione peroxidase 4 (GPX4), which functions in reducing lipid peroxides, was also highly toxic. We therefore propose that GPX4 is likely key in mediating the antioxidant activity of glutathione. In line, inhibition of the ROS scavenger thioredoxin reductase with auranofin also impaired cell viability, whereby we find that oxidative phosphorylation-driven AML subtypes, in particular, are highly dependent on thioredoxin-mediated protection against ferroptosis. Although inhibition of the cystine-glutamine antiporter by sulfasalazine was ineffective as a monotherapy, its combination with L-buthionine-sulfoximine (BSO) further improved AML ferroptosis induction. We propose the combination of either sulfasalazine or antioxidant machinery inhibitors along with ROS inducers such as BSO or chemotherapy for further preclinical testing.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Cisteína/metabolismo , Cisteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Cistationina/farmacologia , Sulfassalazina/farmacologia , Aminoácidos/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Butionina Sulfoximina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA