RESUMO
The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.
Assuntos
Antígenos Virais/imunologia , Betacoronavirus/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito T/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Reino Unido , Vacinas Virais/imunologiaRESUMO
COVID-19 is an ongoing global crisis in which the development of effective vaccines and therapeutics will depend critically on understanding the natural immunity to the virus, including the role of SARS-CoV-2-specific T cells. We have conducted a study of 42 patients following recovery from COVID-19, including 28 mild and 14 severe cases, comparing their T cell responses to those of 16 control donors. We assessed the immune memory of T cell responses using IFNγ based assays with overlapping peptides spanning SARS-CoV-2 apart from ORF1. We found the breadth, magnitude and frequency of memory T cell responses from COVID-19 were significantly higher in severe compared to mild COVID-19 cases, and this effect was most marked in response to spike, membrane, and ORF3a proteins. Total and spike-specific T cell responses correlated with the anti-Spike, anti-Receptor Binding Domain (RBD) as well as anti-Nucleoprotein (NP) endpoint antibody titre (p<0.001, <0.001 and =0.002). We identified 39 separate peptides containing CD4 + and/or CD8 + epitopes, which strikingly included six immunodominant epitope clusters targeted by T cells in many donors, including 3 clusters in spike (recognised by 29%, 24%, 18% donors), two in the membrane protein (M, 32%, 47%) and one in the nucleoprotein (Np, 35%). CD8+ responses were further defined for their HLA restriction, including B*4001-restricted T cells showing central memory and effector memory phenotype. In mild cases, higher frequencies of multi-cytokine producing M- and NP-specific CD8 + T cells than spike-specific CD8 + T cells were observed. They furthermore showed a higher ratio of SARS-CoV-2-specific CD8 + to CD4 + T cell responses. Immunodominant epitope clusters and peptides containing T cell epitopes identified in this study will provide critical tools to study the role of virus-specific T cells in control and resolution of SARS-CoV-2 infections. The identification of T cell specificity and functionality associated with milder disease, highlights the potential importance of including non-spike proteins within future COVID-19 vaccine design.
RESUMO
Immunogenicity (the development of an adaptive immune response reactive with a therapeutic) is a well-described but unwanted facet of biotherapeutic development. There are commonly applied procedures for immunogenicity risk assessment, testing strategies, and bioanalysis. With some modifications, these can be applied to new biotherapeutic modalities. For novel therapies such as antibody-drug conjugates (ADCs), the unique structural components may contribute additional complexities to both immunologic responses and bioanalytical methods. US product inserts (USPIs) for two commercially available ADCs detail the incidence of immunogenicity; however, the body of literature on immunogenicity of ADCs is limited. We recently participated in a conference session on this topic (Annual meeting of the American Association of Pharmaceutical Scientists, held November 2013 in San Antonio, TX, USA. The meeting featured the Symposium: Immunogenicity Assessment for Novel Antibody Drug Conjugates, Nonclinical to Clinical) which prompted an effort to share our perspectives on how immunogenicity risk assessment, testing strategies, and bioanalytical methods can be adapted to reflect the complexity of ADC therapeutics.