Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 218(2): 752-761, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29424932

RESUMO

The impacts of rising atmospheric CO2 concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO2 shapes plant immunity. Furthermore, the impact of sub-ambient CO2 concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO2 (saCO2 ) and elevated CO2 (eCO2 ) on Arabidopsis immunity. Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO2 and enhanced at eCO2 . This CO2 -dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO2 and saCO2 . Although eCO2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO2 , suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO2 corresponded to a loss of resistance in glycolate oxidase mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO2 . By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO2 shapes plant immunity and discuss their evolutionary significance.


Assuntos
Arabidopsis/imunologia , Atmosfera/química , Dióxido de Carbono/farmacologia , Camada de Gelo/química , Imunidade Vegetal , Arabidopsis/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Ciclopentanos/farmacologia , Resistência à Doença/efeitos dos fármacos , Luz , Metabolômica , Oxilipinas/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia
2.
New Phytol ; 218(3): 1205-1216, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465773

RESUMO

ß-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. Using site-directed mutagenesis, we demonstrate that the (l)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). A range of resistance-inducing compounds were identified, of which (R)-ß-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently of salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Desenvolvimento Vegetal , Imunidade Vegetal , Aminobutiratos/farmacologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Resistência à Doença/efeitos dos fármacos , Etilenos/metabolismo , Fungos/fisiologia , Homosserina/farmacologia , Indóis/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Mutação/genética , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Domínios Proteicos , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/metabolismo
3.
PLoS Pathog ; 10(6): e1004167, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945405

RESUMO

Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2(-/-) AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-δ (PPAR-δ) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2(-/-) mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs.


Assuntos
Complemento C1q/metabolismo , Modelos Animais de Doenças , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Glicoproteínas de Membrana/metabolismo , Pneumonia Pneumocócica/imunologia , Receptores Imunológicos/metabolismo , Mucosa Respiratória/imunologia , Animais , Apoptose , Linhagem Celular Transformada , Células Cultivadas , Complemento C1q/genética , Citocinas/metabolismo , Feminino , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , PPAR gama/metabolismo , Fagocitose , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia , Receptores Imunológicos/genética , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Análise de Sobrevida
4.
Mol Plant ; 13(10): 1455-1469, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32717347

RESUMO

External and internal signals can prime the plant immune system for a faster and/or stronger response to pathogen attack. ß-aminobutyric acid (BABA) is an endogenous stress metabolite that induces broad-spectrum disease resistance in plants. BABA perception in Arabidopsis is mediated by the aspartyl tRNA synthetase IBI1, which activates priming of multiple immune responses, including callose-associated cell wall defenses that are under control by abscisic acid (ABA). However, the immediate signaling components after BABA perception by IBI1, as well as the regulatory role of ABA therein, remain unknown. Here, we have studied the early signaling events controlling IBI1-dependent BABA-induced resistance (BABA-IR), using untargeted transcriptome and protein interaction analyses. Transcriptome analysis revealed that IBI1-dependent expression of BABA-IR against the biotrophic oomycete Hyaloperonospora arabidopsidis is associated with suppression of ABA-inducible abiotic stress genes. Protein interaction studies identified the VOZ1 and VOZ2 transcription factors (TFs) as IBI1-interacting partners, which are transcriptionally induced by ABA but suppress pathogen-induced expression of ABA-dependent genes. Furthermore, we show that VOZ TFs require nuclear localization for their contribution to BABA-IR by mediating augmented expression of callose-associated defense. Collectively, our study indicates that the IBI1-VOZ signaling module channels pathogen-induced ABA signaling toward cell wall defense while simultaneously suppressing abiotic stress-responsive genes.


Assuntos
Ácido Abscísico/metabolismo , Aminobutiratos/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Fatores de Transcrição/metabolismo , Parede Celular/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA