Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3483, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837575

RESUMO

The Paris agreement was adopted to hold the global average temperature increase to well below 2 °C and pursue efforts to limit it to 1.5 °C. Here, we investigate the event-to-event hydroclimatic intensity, where an event is a pair of adjacent wet and dry spells, under future warming scenarios. According to a set of targeted multi-model large ensemble experiments, event-wise intensification will significantly increase globally for an additional 0.5 °C warming beyond 1.5 °C. In high latitudinal regions of the North American continent and Eurasia, this intensification is likely to involve overwhelming increases in wet spell intensity. Western and Eastern North America will likely experience more intense wet spells with negligible changes of dry spells. For the Mediterranean region, enhancement of dry spells seems to be dominating compared to the decrease in wet spell strength, and this will lead to an overall event-wise intensification. Furthermore, the extreme intensification could be 10 times stronger than the mean intensification. The high damage potential of such drastic changes between flood and drought conditions poses a major challenge to adaptation, and the findings suggest that risks could be substantially reduced by achieving a 1.5 °C target.

2.
Atmos Chem Phys ; 18(15): 11277-11287, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32742282

RESUMO

Major stratospheric sudden warmings (SSWs) are the largest instance of wintertime variability in the Arctic stratosphere. Due to their relevance for the troposphere-stratosphere system, several previous studies have focused on their potential response to anthropogenic forcings. However, a wide range of results have been reported, from a future increase in the frequency of SSWs to a decrease. Several factors might explain these contradictory results, notably the use of different metrics for the identification of SSWs, and the impact of large climatological biases in single-model studies. Here we revisit the question of future SSWs changes, using an identical set of metrics applied consistently across 12 different models participating in the Chemistry Climate Model Initiative. From analyzing future integrations we find no statistically significant change in the frequency of SSWs over the 21st century, irrespective of the metric used for the identification of SSWs. Changes in other SSWs characteristics, such as their duration and the tropospheric forcing, are also assessed: again, we find no evidence of future changes over the 21st century.

3.
Nat Commun ; 8: 14996, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28418406

RESUMO

Peak runoff in streams and rivers of the western United States is strongly influenced by melting of accumulated mountain snowpack. A significant decline in this resource has a direct connection to streamflow, with substantial economic and societal impacts. Observations and reanalyses indicate that between the 1980s and 2000s, there was a 10-20% loss in the annual maximum amount of water contained in the region's snowpack. Here we show that this loss is consistent with results from a large ensemble of climate simulations forced with natural and anthropogenic changes, but is inconsistent with simulations forced by natural changes alone. A further loss of up to 60% is projected within the next 30 years. Uncertainties in loss estimates depend on the size and the rate of response to continued anthropogenic forcing and the magnitude and phasing of internal decadal variability. The projected losses have serious implications for the hydropower, municipal and agricultural sectors in the region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA