Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mutagenesis ; 39(2): 119-140, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019677

RESUMO

Pregnancy is a period that is characterized by several metabolic and physiological changes and requires special attention, especially with regard to the relationship between feeding and foetal development. Therefore, the objective of this study was to evaluate whether the practice of voluntary physical exercise (VPE) in combination with chronic consumption of fructose (FRU) from the beginning of life and/or until the gestational period causes genotoxic changes in pregnant females and in their offspring. Seventy Swiss female mice received FRU in the hydration bottle and/or practiced VPE for 8 weeks (prepregnancy/pregnancy). After the lactation period, the offspring groups were separated by sex. It was observed that the consumption of FRU affected the food consumption, serum concentration of FRU, and glycemic profile in the mothers and that the VPE decreases these parameters. In addition, FRU was genotoxic in the mothers' peripheral tissues and VPE had a preventive effect on these parameters. The offspring showed changes in food consumption, serum FRU concentration, and body weight, in addition to an increase in the adiposity index in male offspring in the FRU (FRU) group and a decrease in the FRU + VPE group. FRU leads to hepatic steatosis in the offspring and VPE was able to decrease the area of steatosis. In addition, FRU led to genotoxicity in the offspring and VPE was able to modulate this effect, reducing damages. In conclusion, we observed that all interventions with VPE had nutritional, genetic, and biochemical benefits of the mother and her offspring.


Assuntos
Frutose , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Masculino , Feminino , Animais , Humanos , Frutose/efeitos adversos , Obesidade , Peso Corporal , Adiposidade , Lactação , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
J Environ Sci Health B ; 58(1): 1-9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573540

RESUMO

The present study examined the effects of mesoporous silica nanoparticles (MSNs) on its adsorption capacity of aflatoxin B1 (AFB1). Moreover, the study evaluated the toxicity of MSNs with AFB1 using NIH3T3 cells and hemolysis test. The obtained MSNs were spherical, irregular-like in shape, having a mean size of 39.97 ± 7.85 nm and a BET surface area of 1195 m2/g. At 0.1 mg mL-1 concentration of MSN, the AFB1 adsorption capacity was 30%, which reached 70% when the MSN concentration increased to 2.0 mg mL-1. Our findings showed that AFB1 was adsorbed (∼67%) in the first few minutes on being in contact with MSNs, reaching an adsorption capacity of ∼70% after 15 min. Thereafter, the adsorption capacity remained constant in solution, demonstrating that the MSNs adsorbed toxins even beyond overnight. MSN treatment (0.5-2.0 mg mL-1) using NIH3T3 cells did not result in any reduction in cell viability. In addition, MSN treatment completely reversed the cytotoxic effect of AFB1 at all concentrations. Hemolysis test also revealed no hemolysis in MSNs evaluated alone and in those combined with AFB1. To the best of our knowledge, this study is the first to demonstrate that MSN can reduce cell toxicity produced by AFB1 due to its potential to adsorb mycotoxins.


Assuntos
Micotoxinas , Nanopartículas , Animais , Camundongos , Aflatoxina B1 , Dióxido de Silício , Células NIH 3T3
3.
Purinergic Signal ; 18(3): 307-315, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35687211

RESUMO

Gallic acid (GA) is a secondary metabolite found in plants. It has the ability to cross the blood-brain barrier and, through scavenging properties, has a protective effect in a brain insult model. Alcohol metabolism generates reactive oxygen species (ROS); thus, alcohol abuse has a deleterious effect on the brain. The zebrafish is a vertebrate often used for screening toxic substances and in acute ethanol exposure models. The aim of this study was to evaluate whether GA pretreatment (24 h) prevents the changes induced by acute ethanol exposure (1 h) in the purinergic signaling pathway in the zebrafish brain via degradation of extracellular nucleotides and oxidative stress. The nucleotide cascade promoted by the nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase was assessed by quantifying nucleotide metabolism. The effect of GA alone at 5 and 10 mg L-1 did not change the nucleotide levels. Pretreatment with 10 mg L-1 GA prevented an ethanol-induced increase in ATP and ADP levels. No significant difference was found between the AMP levels of the two pretreatment groups. Pretreatment with 10 mg L-1 GA prevented ethanol-enhanced lipid peroxidation and dichlorodihydrofluorescein (DCFH) levels. The higher GA concentration was also shown to positively modulate against ethanol-induced effects on superoxide dismutase (SOD), but not on catalase (CAT). This study demonstrated that GA prevents the inhibitory effect of ethanol on NTPDase activity and oxidative stress parameters, thus consequently modulating nucleotide levels that may contribute to the possible protective effects induced by alcohol and purinergic signaling.


Assuntos
Etanol , Peixe-Zebra , Animais , Encéfalo/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Ácido Gálico/metabolismo , Ácido Gálico/farmacologia , Nucleotídeos/metabolismo , Estresse Oxidativo , Purinas/metabolismo , Peixe-Zebra/metabolismo
4.
J Environ Sci Health B ; 57(3): 176-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188439

RESUMO

Developing environmentally friendly alternative strategies to reduce the damage caused by fungi in agriculture has been widely investigated. In this study, we evaluated using mesoporous silica nanoparticles (MSNs) incorporated with zinc oxide (MSNs-ZnO) as a potential antifungal agent against Fusarium graminearum and Aspergillus flavus strains, as well as their antimycotoxin properties. The MSNs that synthesized and characterized could release abundant ZnO in the first 24 h. Subsequently, the ZnO release became slower, providing greater durability of the antifungal effect. Significant (P < 0.001) growth reductions in F. graminearum (81%) and A. flavus (65%) compared to the control were obtained at a high concentration of the MSNs-ZnO (1.0 mg mL-1). Moreover, the MSNs-ZnO treatment at a high concentration (1.0 mg mL-1) caused morphology alteration in both fungi, showing ruptures and deformations in the fungal hyphae, affecting their growth and toxin production. A significant reduction (P < 0.001) in the productions of deoxynivalenol (89%) and aflatoxin B1 (58%) by F. graminearum and A. flavus were also observed. These findings imply that using MSNs as the carriers of zinc compounds, such as ZnO, could be investigated as a safe alternative for effectively controlling toxigenic fungi in agriculture.


Assuntos
Fusarium , Nanopartículas , Óxido de Zinco , Antifúngicos/farmacologia , Aspergillus flavus , Dióxido de Silício/farmacologia , Óxido de Zinco/farmacologia
5.
J Environ Sci Health B ; 53(3): 184-190, 2018 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-29286883

RESUMO

Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn2+, Li+, Cu2+ and Co2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li+, Cu2+, and Co2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn2+, Li+, Cu2+, and Co2+. The fungi growth inhibition decreased as zeolite-Cu2+>zeolite-Li+>zeolite-Co2+>zeolite-Zn2+. In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li+ were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL-1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li+, which showed to be a promising agent against F. graminearum and its toxin.


Assuntos
Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Tricotecenos/química , Zeolitas/química , Zeolitas/farmacologia , Adsorção , Avaliação Pré-Clínica de Medicamentos/métodos , Fungicidas Industriais/química , Fusarium/crescimento & desenvolvimento , Lítio/química , Lítio/farmacologia , Metais/química
6.
Front Vet Sci ; 11: 1248811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414656

RESUMO

Current vaccination protocols raise concerns about the efficacy of immunization. There is evidence that changes in the gut microbiota can impact immune response. The formation of the gut microbiota in newborns plays a crucial role in immunity. Probiotic bacteria and prebiotics present important health-promoting and immunomodulatory properties. Thus, we hypothesize that pro and prebiotic supplementation can improve the efficacy of vaccination in newborns. In this protocol, newborn mice were used and treated with a single-dose rabies vaccine combined with Nuxcell Neo® (2 g/animal/week) for 3 weeks. Samples were collected on days 7, 14, and 21 after vaccination for analysis of cytokines and concentration of circulating antibodies. Our results show an increased concentration of antibodies in animals vaccinated against rabies and simultaneously treated with Nuxcell Neo® on days 14 and 21 when compared to the group receiving only the vaccine. In the cytokine levels analysis, it was possible to observe that there weren't relevant and significant changes between the groups, which demonstrates that the health of the animal remains stable. The results of our study confirm the promising impact of the use of Nuxcell Neo® on the immune response after vaccination.

7.
J Drug Target ; 32(2): 172-185, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38155427

RESUMO

Introduction: The search for fast and efficient treatment for dermonecrotic lesions caused by the venom of the spider from the Loxosceles simillis, is a demand in health. Prednisolone is one of the most used drugs, however it has side effects. In this context, addictionally gold nanoparticles (GNPs) have anti-inflammatory, antioxidant, and antibacterial properties. The use of photobiomodulation has show to be efficient in the process of tissue repair. Therefore, the purpose of this study was to investigate the anti-inflammatory effect of photobiomodulation and GNPs associated or not with a low concentration of prednisolone in animal models of dermonecrotic lesion.Methodology: For this, rabbits with venon-induced dermonecrotic lesion were subjected to topical treatment with prednisolone + laser or GNPs + laser or Pred-GNPs + laser. The area of edema, necrosis and erythema were measured. On the last day of treatment, the animals were euthanized to remove the organs for histopathological and biochemical analysis.Results: All treatments combinations were effective in promoting the reduction of necrotic tissue and erythema.Conclusion: With this results, we suggest that the use of laser and nanoparticles, associated or not with prednisolone, should be considered for the treatment of dermonecrotic injury.


Assuntos
Terapia com Luz de Baixa Intensidade , Nanopartículas Metálicas , Venenos de Aranha , Animais , Coelhos , Diester Fosfórico Hidrolases/química , Ouro , Venenos de Aranha/química , Eritema , Prednisolona/farmacologia , Prednisolona/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
8.
Toxicon ; 243: 107717, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38614245

RESUMO

Cancer-related pain is considered one of the most prevalent symptoms for those affected by cancer, significantly influencing quality of life and treatment outcomes. Morphine is currently employed for analgesic treatment in this case, however, chronic use of this opioid is limited by the development of analgesic tolerance and adverse effects, such as digestive and neurological disorders. Alternative therapies, such as ion channel blockade, are explored. The toxin Phα1ß has demonstrated efficacy in blocking calcium channels, making it a potential candidate for alleviating cancer-related pain. This study aims to assess the antinociceptive effects resulting from intravenous administration of the recombinant form of Phα1ß (r-Phα1ß) in an experimental model of cancer-related pain in mice, tolerant or not to morphine. The model of cancer-induced pain was used to evaluate these effects, with the injection of B16F10 cells, followed by the administration of the r-Phα1ß, and evaluation of the mechanical threshold by the von Frey test. Also, adverse effects were assessed using a score scale, the rotarod, and open field tests. Results indicate that the administration of r-Phα1ß provoked antinociception in animals with cancer-induced mechanical hyperalgesia, with or without morphine tolerance. Previous administration of r-Phα1ß was able to recover the analgesic activity of morphine in animals tolerant to this opioid. r-Phα1ß was proved safe for these parameters, as no adverse effects related to motor and behavioral activity were observed following intravenous administration. This study suggests that the concomitant use of morphine and r-Phα1ß could be a viable strategy for pain modulation in cancer patients.


Assuntos
Administração Intravenosa , Dor do Câncer , Tolerância a Medicamentos , Morfina , Animais , Morfina/administração & dosagem , Morfina/uso terapêutico , Morfina/farmacologia , Dor do Câncer/tratamento farmacológico , Camundongos , Analgésicos/uso terapêutico , Analgésicos/farmacologia , Venenos de Aranha , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/administração & dosagem , Masculino , Proteínas Recombinantes/uso terapêutico , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico
9.
Diagn Microbiol Infect Dis ; 109(3): 116326, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692205

RESUMO

Serodiagnosis methods have been used as platforms for diagnostic tests for many diseases. Due to magnetic nanoparticles' properties to quickly detach from an external magnetic field and particle size effects, these nanomaterials' functionalization allows the specific isolation of target analytes, enhancing accuracy parameters and reducing serodiagnosis time. Superparamagnetic iron oxide nanoparticles (MNPs) were synthesized and functionalized with polyethylene glycol (PEG) and then associated with the synthetic Leishmaniosis epitope. This nano-peptide antigen showed promising results. Regarding Tegumentary leishmaniasis diagnostic accuracy, the AUC was 0.8398 with sensibility 75% (95CI% 50.50 - 89.82) and specificity 87.50% (95CI% 71.93 - 95.03), and Visceral leishmaniasis accuracy study also present high performance, the AUC was 0.9258 with sensibility 87.50% (95CI% 63.98 - 97.78) and specificity 87.50% (95CI% 71.93 - 95.03). Our results demonstrate that the association of the antigen with MNPs accelerates and improves the diagnosis process. MNPs could be an important tool for enhancing serodiagnosis.


Assuntos
Ensaio de Imunoadsorção Enzimática , Polietilenoglicóis , Sensibilidade e Especificidade , Humanos , Ensaio de Imunoadsorção Enzimática/métodos , Polietilenoglicóis/química , Antígenos de Protozoários/imunologia , Leishmaniose/diagnóstico , Nanopartículas Magnéticas de Óxido de Ferro/química , Anticorpos Antiprotozoários/sangue
10.
Life Sci ; 312: 121200, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435227

RESUMO

Animal models of cerebral ischemia have improved our understanding of the pathophysiology and mechanisms involved in stroke, as well as the investigation of potential therapies. The potential of zebrafish to model human diseases has become increasingly evident. The availability of these models allows for an increased understanding of the role of chemical exposure in human conditions and provides essential tools for mechanistic studies of disease. To evaluate the potential neuroprotective properties of minocycline against ischemia and reperfusion injury in zebrafish and compare them with other standardized models. In vitro studies with BV-2 cells were performed, and mammalian transient middle cerebral artery occlusion (tMCAO) was used as a comparative standard with the zebrafish stroke model. Animals were subjected to ischemia and reperfusion injury protocols and treated with minocycline. Infarction size, cytokine levels, oxidative stress, glutamate toxicity, and immunofluorescence for microglial activation, and behavioral test results were determined and compared. Administration of minocycline provided significant protection in the three stroke models in different parameters analyzed. Both experimental models complement each other in their particularities. The proposal also strengthens the findings in the literature in rodent models and allows the validation of alternative models so that they can be used in further research involving diseases with ischemia and reperfusion injury.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Humanos , Peixe-Zebra , Minociclina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Modelos Animais de Doenças , Mamíferos
11.
Toxicon ; 225: 107056, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804442

RESUMO

Micrurus surinamensis is a semi-aquatic coral snake found in primary forest region and can cause relevant human accidents. In this work we investigated the toxic and antigenic activities of the Peruvian Micrurus surinamensis venom (MsV). We found that MsV show hyaluronidase activity but lack LAAO and PLA2 enzymatic activities. Interestingly, MsV induce edematogenic responses but cannot cause nociceptive effects. Furthermore, MsV can reduce in vitro cell viability in MGSO-3 cell line derived from human breast cancer tissue. To evaluate its antigenic potential, rabbits were immunized with MsV, which proved to be immunogenic. ELISA, immunobloting and in vivo neutralization assays demonstrated that the specific rabbit anti-MsV antivenom is more efficient than the therapeutic Brazilian antivenom in recognizing and neutralizing the lethal activity of MsV. MsV differs in protein profile and biological activities from M. frontalis venom (MfV), used as control, which impairs its recognition and neutralization by Brazilian therapeutic anti-elapidic antivenom. We performed a SPOT immunoassay for the identification of B-cell linear epitopes in the main toxins described for MsV targeted by the elicited neutralizing antibodies previously produced. A membrane containing 15-mer peptides representing the sequences of five 3TFxs and five PLA2s was produced and probed with anti- MsV antibodies. Results revealed important regions in 3FTx toxins for venom neutralization. Identifying the main MsV components and its biological activities can be helpful in guiding the production of antivenoms and in the optimization of treatment for coral snake envenomation in Brazil.


Assuntos
Cobras Corais , Toxinas Biológicas , Animais , Coelhos , Humanos , Antivenenos/farmacologia , Peru , Venenos Elapídicos/química , Toxinas Biológicas/química , Elapidae
12.
Sci Rep ; 13(1): 4418, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932156

RESUMO

Pain caused by the tumor or aromatase inhibitors (AIs) is a disabling symptom in breast cancer survivors. Their mechanisms are unclear, but pro-algesic and inflammatory mediators seem to be involved. Kinins are endogenous algogenic mediators associated with various painful conditions via B1 and B2 receptor activation, including chemotherapy-induced pain and breast cancer proliferation. We investigate the involvement of the kinin B1 and B2 receptors in metastatic breast tumor (4T1 breast cancer cells)-caused pain and in aromatase inhibitors (anastrozole or letrozole) therapy-associated pain. A protocol associating the tumor and antineoplastic therapy was also performed. Kinin receptors' role was investigated via pharmacological antagonism, receptors protein expression, and kinin levels. Mechanical and cold allodynia and muscle strength were evaluated. AIs and breast tumor increased kinin receptors expression, and tumor also increased kinin levels. AIs caused mechanical allodynia and reduced the muscle strength of mice. Kinin B1 (DALBk) and B2 (Icatibant) receptor antagonists attenuated these effects and reduced breast tumor-induced mechanical and cold allodynia. AIs or paclitaxel enhanced breast tumor-induced mechanical hypersensitivity, while DALBk and Icatibant prevented this increase. Antagonists did not interfere with paclitaxel's cytotoxic action in vitro. Thus, kinin B1 or B2 receptors can be a potential target for treating the pain caused by metastatic breast tumor and their antineoplastic therapy.


Assuntos
Antineoplásicos , Dor do Câncer , Neoplasias , Camundongos , Animais , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Receptor B2 da Bradicinina/metabolismo , Receptor B1 da Bradicinina/metabolismo , Bradicinina/farmacologia , Dor , Paclitaxel
13.
Viruses ; 15(9)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37766284

RESUMO

The impact of the COVID-19 pandemic caused by the SARS-CoV-2 virus underscored the crucial role of laboratorial tests as a strategy to control the disease, mainly to indicate the presence of specific antibodies in human samples from infected patients. Therefore, suitable recombinant antigens are relevant for the development of reliable tests, and so far, single recombinant proteins have been used. In this context, B-cell epitopes-based chimeric proteins can be an alternative to obtain tests with high accuracy through easier and cheaper production. The present study used bioinformatics tools to select specific B-cell epitopes from the spike (S) and the nucleocapsid (N) proteins from the SARS-CoV-2 virus, aiming to produce a novel recombinant chimeric antigen (N4S11-SC2). Eleven S and four N-derived B-cell epitopes were predicted and used to construct the N4S11-SC2 protein, which was analyzed in a recombinant format against serum and urine samples, by means of an in house-ELISA. Specific antibodies were detected in the serum and urine samples of COVID-19 patients, which were previously confirmed by qRT-PCR. Results showed that N4S11-SC2 presented 83.7% sensitivity and 100% specificity when using sera samples, and 91.1% sensitivity and 100% specificity using urine samples. Comparable findings were achieved with paired urine samples when compared to N and S recombinant proteins expressed in prokaryotic systems. However, better results were reached for N4S11-SC2 in comparison to the S recombinant protein when using paired serum samples. Anti-N4S11-SC2 antibodies were not clearly identified in Janssen Ad26.COV2.S COVID-19-vaccinated subjects, using serum or paired urine samples. In conclusion, this study presents a new chimeric recombinant antigen expressed in a prokaryotic system that could be considered as an alternative diagnostic marker for the SARS-CoV-2 infection, with the potential benefits to be used on serum or urine from infected patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Epitopos de Linfócito B , Ad26COVS1 , Pandemias , COVID-19/diagnóstico , Proteínas Recombinantes/genética , Proteínas Recombinantes de Fusão/genética
14.
Neurotoxicology ; 89: 92-98, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065950

RESUMO

Fluoride is an essential chemical found in dental preparations, pesticides and drinking water. Excessive fluoride exposure is related to toxicological and neurological disruption. Zebrafish are used in translational approaches to understand neurotoxicity in both biomedical and environmental areas. However, there is no complete knowledge about the cumulative effects of fluoride on neurotransmission systems. Therefore, the aim of this study was to evaluate whether prolonged exposure to sodium fluoride (NaF) alters cholinergic and glutamatergic systems and oxidative stress homeostasis in the zebrafish brain. Adult zebrafish were used, divided into four experimental groups, one control group and three groups exposed to NaF at 30, 50 and 100 mg.L-1 for a period of 30 days. After NaF at 30 mg.L-1 exposure, there were significant decreases in acetylcholinesterase (29.8 %) and glutamate uptake (39.3 %). Furthermore, thiobarbituric acid-reactive species were decreased at NaF 50 mg.L-1 (32.7 %), while the group treated with NaF at 30 mg.L-1 showed an increase in dichlorodihydrofluorescein oxidation (41.4 %). NaF at 30 mg.L-1 decreased both superoxide dismutase (55.3 %) and catalase activities (26.1 %). The inhibitory effect observed on cholinergic and glutamatergic signalling mechanisms could contribute to the neurodegenerative events promoted by NaF in the zebrafish brain.


Assuntos
Encéfalo , Fluoretos , Estresse Oxidativo , Transmissão Sináptica , Peixe-Zebra , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Fluoretos/efeitos adversos , Transmissão Sináptica/efeitos dos fármacos , Peixe-Zebra/metabolismo
15.
ACS Appl Nano Mater ; 5(1): 642-653, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35098045

RESUMO

The COVID-19 pandemic, caused by the fast transmission and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently considered a serious health problem, requiring an effective strategy to contain SARS-CoV-2 dissemination. For this purpose, epitopes of the SARS-CoV-2 spike (S) and sucleocapsid (N) proteins were identified by bioinformatics tools, and peptides that mimic these epitopes were chemically synthesized and then conjugated to superparamagnetic nanoparticles (SPMNPs). Three peptides from S protein and three from N protein were used as antigens in a conventional enzyme-linked immunosorbent assay (ELISA) against serum samples from COVID-19-positive patients, or from healthy donors, collected before the pandemic. Three peptides were effective as antigens in conventional peptide-based ELISA, achieving 100% sensitivity and specificity, with high accuracy. The best-performing peptides, p2pS, p1pN, and p3pN, were associated with superparamagnetic nanoparticles (SPMNPs) and were used to perform nanomagnetic peptide-based ELISA. The p2pS-SPMNP conjugate presented 100% sensitivity and specificity and excellent accuracy (area under the curve (AUC) = 1.0). However, p1pN and p3pN peptides, when conjugated to SPMNPs, did not preserve the capacity to differentiate positive sera from negative sera in all tested samples, yet both presented sensitivity and specificity above 80% and high accuracy, AUC > 0.9. We obtained three peptides as advantageous antigens for serodiagnosis. These peptides, especially p2pS, showed promising results in a nanomagnetic peptide-based ELISA and may be suitable as a precoated antigen for commercial purposes, which would accelerate the diagnosis process.

16.
Neural Regen Res ; 17(2): 450-458, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34269222

RESUMO

Fibromyalgia (FM) is a complex pathology described as persistent hyperalgesia including somatic and mood dysfunctions, depression and anxiety. Although the etiology of FM is still unknown, a significant decrease in biogenic amines is a common characteristic in its pathogenesis. Here, our main objective was to investigate the role of dopamine D3/D2 receptor during the reserpine-induced pain in mice. Our results showed that pramipexole (PPX) - a dopaminergic D3/D2 receptor agonist - inhibited mechanical allodynia and thermal sensitivity induced by reserpine. Relevantly, PPX treatment decreased immobility time and increased the number of grooming in the forced swimming test and splash test, respectively. Animals that received PPX remained longer in the open arms than the reserpine group using elevated plus-maze apparatus. The repeated PPX administration, given daily for 4 days, significantly blocked the mechanical and thermal allodynia during FM model, similarly to pregabalin, although it failed to affect the reserpine-induced thermal nociception. Reserpine administration induced significant downregulation of dopamine concentration in the central nervous system, and repeated treatment with PPX restored dopamine levels in the frontal cortex and spinal cord tissues. Moreover, PPX treatment inhibited oxidants production such as DCFH (2',7'-dichlorodihydrofluorescein) and nitrite, also decreased oxidative damage (carbonyl), and upregulated the activity of superoxide dismutase in the spinal cord. Together, our findings demonstrated the ability of dopamine D3/D2 receptor-preferring agonist in reducing pain and mood dysfunction allied to FM in mice. All experimental protocols were approved by the Universidade Federal de Santa Catarina (UFSC) Ethics Committee (approval No. 2572210218) on May 10, 2018.

17.
Environ Sci Pollut Res Int ; 29(27): 41247-41260, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35089511

RESUMO

Preservative treatments increase the durability of wood, and one of the alternative treatments involves the use of chromated copper arsenate (CCA). Due to the toxicity of CCA, the disposal of CCA-treated wood residues is problematic, and burning is considered to provide a solution. The ecotoxicological potential of ash can be high when these components are toxic and mutagenic. The aim of this study was to evaluate the toxicity and genotoxicity of bottom ash leachates originating from CCA-treated wood burning. Physical-chemical analysis of the leachates revealed that in treated wood ashes leachate (CCA-TWBAL), the contents of arsenic and chromium were 59.45 mg.L-1 and 54.28 mg.L-1, respectively. In untreated wood ashes leachate (UWBAL), these contents were 0.70 mg.L-1 and 0.30 mg.L-1, respectively. CCA-TWBAL caused significant toxicity in Lactuca sativa, Allium cepa, and microcrustacean Artemia spp. (LC50 = 12.12 mg.mL-1). Comet assay analyses using NIH3T3 cells revealed that concentrations ranging from 1.0 and 2.5 mg.mL-1 increase the damage frequency (DF) and damage index (DI). According to MTT assay results, CCA-TWBAL at concentrations as low as 1 mg.mL-1 caused a significant decrease in cellular viability. Hemolysis assay analyses suggest that the arsenic and chromium leachate contents are important for the ecotoxic, cytotoxic, and genotoxic effects of CCA-TWBAL.


Assuntos
Antineoplásicos , Arsênio , Eliminação de Resíduos , Animais , Arseniatos/química , Arseniatos/toxicidade , Arsênio/análise , Cromo/análise , Cobre/química , Dano ao DNA , Camundongos , Células NIH 3T3 , Eliminação de Resíduos/métodos , Madeira/química
18.
Eur J Pharmacol ; 895: 173870, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476653

RESUMO

Fibromyalgia is a potentially disabling chronic disease, characterized by widespread pain and a range of comorbidities such as hypertension. Among the mechanisms involved in fibromyalgia-like pain symptoms are kinins and their B1 and B2 receptors. Moreover, angiotensin I converting enzyme (ACE) inhibitors, commonly used as antihypertensive drugs, can enhance pain by blocking the degradation of peptides such as substance P and bradykinin, besides enhancing kinin receptors signalling. We investigated the effect of ACE inhibitors on reserpine-induced fibromyalgia-like pain symptoms and the involvement of kinins in this effect in mice. Nociceptive parameters (mechanical and cold allodynia and overt nociception) were evaluated after ACE inhibitors administration in mice previously treated with reserpine. The role of kinin B1 and B2 receptors was investigated using pharmacological antagonism. Additionally, bradykinin levels, as well as the activity of ACE and kininase I, were measured in the sciatic nerve, spinal cord and cerebral cortex of the mice. The ACE inhibitors enalapril and captopril enhanced reserpine-induced mechanical allodynia, and this increase was prevented by kinin B1 and B2 receptor antagonists. Substance P and bradykinin caused overt nociception and increased mechanical allodynia in animals treated with reserpine. Reserpine plus ACE inhibitors increased bradykinin-related peptide levels and inhibited ACE activity in pain modulation structures. Since hypertension is a frequent comorbidity affecting fibromyalgia patients, hypertension treatment with ACE inhibitors in these patients should be reviewed once this could enhance fibromyalgia-like pain symptoms. Thus, the treatment of hypertensive patients with fibromyalgia could include other classes of antihypertensive drugs, different from ACE inhibitors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/toxicidade , Fibromialgia/induzido quimicamente , Sistema Nervoso/efeitos dos fármacos , Dor Nociceptiva/induzido quimicamente , Limiar da Dor/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Receptores da Bradicinina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Captopril/toxicidade , Modelos Animais de Doenças , Enalapril/toxicidade , Fibromialgia/enzimologia , Fibromialgia/fisiopatologia , Masculino , Camundongos , Sistema Nervoso/enzimologia , Sistema Nervoso/fisiopatologia , Dor Nociceptiva/enzimologia , Dor Nociceptiva/fisiopatologia , Reserpina , Transdução de Sinais
19.
Neuroscience ; 457: 41-50, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465408

RESUMO

Gold nanoparticles (GNP) have emerged as an alternative to biomaterials in biomedical applications. Research has clearly demonstrated the relative safety and low toxicity of these molecules. However, the possible neuroprotective effect of GNP on the central nervous system (CNS) and its relationship with neurological and psychiatric disorders remain unclear. Zebrafish is a reliable model to investigate the impact of ethanol (EtOH) consumption on the CNS, including reward signaling such as the cholinergic neurotransmission system. Here, we investigated whether cotreatment or pretreatment with GNP prevented EtOH-induced changes in acetylcholinesterase activity and oxidative stress in the brain of zebrafish. We exposed adult zebrafish to 2.5 mg·L-1 GNP 1 h prior to EtOH (1% v/v) treatment for 1 h, and cotreated adult zebrafish simultaneously with both substances for 1 h. Pretreatment with GNP did not prevent EtOH-induced increase in the acetylcholinesterase activity, whereas cotreatment with 2.5 mg·L-1 GNP and EtOH protected against this increase. The results also suggested similar protective effect on oxidative stress parameters in the zebrafish pretreated with GNP at 2.5 mg·L-1. GNP significantly decreased the levels of thiobarbituric acid reactive species and dihydrodichlorofluorescein levels when cotreated with EtOH. GNP also prevented EtOH-induced increase in superoxide dismutase and catalase activities, suggesting a modulatory role of GNP in enzymatic antioxidant defenses. Our results showed that GNP was able to modulate the disruption of cholinergic and oxidative homeostasis in the brain of zebrafish. These findings indicate for the first time that zebrafish is an interesting perspective to investigate nanoparticles against disorders related to alcohol abuse.


Assuntos
Nanopartículas Metálicas , Peixe-Zebra , Acetilcolinesterase/metabolismo , Animais , Etanol/toxicidade , Ouro , Estresse Oxidativo , Peixe-Zebra/metabolismo
20.
J Ethnopharmacol ; 265: 113293, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32841698

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kava extract (Piper methysticum) is a phytotherapic mainly used for the treatment of anxiety. Although the reported effects of Kava drinking improving psychotic symptoms of patients when it was introduced to relieve anxiety in aboriginal communities, its effects on models of psychosis-like symptoms are not investigated. AIM OF THE STUDY: To investigate the effects of Kava extract on behavioral changes induced by amphetamine (AMPH) and its possible relation with alterations in monoamine oxidase (MAO) activity. MATERIALS AND METHODS: Mice received vehicle or Kava extract by gavage and, 2 h after vehicle or AMPH intraperitoneally. Twenty-five minutes after AMPH administration, behavioral (elevated plus maze, open field, stereotyped behavior, social interaction and Y maze) and biochemical tests (MAO-A and MAO-B activity in cortex, hippocampus and striatum) were sequentially evaluated. RESULTS: Kava extract exhibited anxiolytic effects in plus maze test, increased the locomotor activity of mice in open field test and decreased MAO-A (in cortex) and MAO-B (in hippocampus) activity of mice. Kava extract prevented the effects of AMPH on stereotyped behavior and, the association between Kava/AMPH increased the number of entries into arms in Y maze test as well as MAO-B activity in striatum. However, Kava extract did not prevent hyperlocomotion induced by AMPH in open field test. The social interaction was not modified by Kava extract and/or AMPH. CONCLUSION: The results showed that Kava extract decreased the stereotyped behavior induced by AMPH at the same dose that promotes anxiolytic effects, which could be useful to minimize the psychotic symptoms in patients.


Assuntos
Anfetamina/farmacologia , Kava/química , Extratos Vegetais/farmacologia , Comportamento Estereotipado/efeitos dos fármacos , Animais , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA