Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proteins ; 91(5): 585-592, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36443029

RESUMO

Escherichia coli NfsA and NfsB are founding members of two flavoprotein families that catalyze the oxygen-insensitive reduction of nitroaromatics and quinones by NAD(P)H. This reduction is required for the activity of nitrofuran antibiotics and the enzymes have also been proposed for use with nitroaromatic prodrugs in cancer gene therapy and biocatalysis, but the roles of the proteins in vivo in bacteria are not known. NfsA is NADPH-specific whereas NfsB can also use NADH. The crystal structures of E. coli NfsA and NfsB and several analogs have been determined previously. In our crystal trials, we unexpectedly observed NfsA bound to fumarate. We here present the X-ray structure of the E. coli NfsA-fumarate complex and show that fumarate acts as a weak inhibitor of NfsA but not of NfsB. The structural basis of this differential inhibition is conserved in the two protein families and occurs at fumarate concentrations found in vivo, so impacting the efficacy of these proteins.


Assuntos
Proteínas de Escherichia coli , Nitrofuranos , Escherichia coli/metabolismo , Oxigênio , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Nitrorredutases/química
2.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983061

RESUMO

Escherichia coli NfsB has been studied extensively for its potential for cancer gene therapy by reducing the prodrug CB1954 to a cytotoxic derivative. We have previously made several mutants with enhanced activity for the prodrug and characterised their activity in vitro and in vivo. Here, we determine the X-ray structure of our most active triple and double mutants to date, T41Q/N71S/F124T and T41L/N71S. The two mutant proteins have lower redox potentials than wild-type NfsB, and the mutations have lowered activity with NADH so that, in contrast to the wild-type enzyme, the reduction of the enzyme by NADH, rather than the reaction with CB1954, has a slower maximum rate. The structure of the triple mutant shows the interaction between Q41 and T124, explaining the synergy between these two mutations. Based on these structures, we selected mutants with even higher activity. The most active one contains T41Q/N71S/F124T/M127V, in which the additional M127V mutation enlarges a small channel to the active site. Molecular dynamics simulations show that the mutations or reduction of the FMN cofactors of the protein has little effect on its dynamics and that the largest backbone fluctuations occur at residues that flank the active site, contributing towards its broad substrate range.


Assuntos
Proteínas de Escherichia coli , Neoplasias , Pró-Fármacos , Humanos , Escherichia coli/metabolismo , Pró-Fármacos/química , NAD , Neoplasias/tratamento farmacológico , Oxirredutases , Nitrorredutases/metabolismo , Proteínas de Escherichia coli/genética
3.
Biochem J ; 478(13): 2601-2617, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34142705

RESUMO

NfsA is a dimeric flavoprotein that catalyses the reduction in nitroaromatics and quinones by NADPH. This reduction is required for the activity of nitrofuran antibiotics. The crystal structure of free Escherichia coli NfsA and several homologues have been determined previously, but there is no structure of the enzyme with ligands. We present here crystal structures of oxidised E. coli NfsA in the presence of several ligands, including the antibiotic nitrofurantoin. Nitrofurantoin binds with the furan ring, rather than the nitro group that is reduced, near the N5 of the FMN. Molecular dynamics simulations show that this orientation is only favourable in the oxidised enzyme, while potentiometry suggests that little semiquinone is formed in the free protein. This suggests that the reduction occurs by direct hydride transfer from FMNH- to nitrofurantoin bound in the reverse orientation to that in the crystal structure. We present a model of nitrofurantoin bound to reduced NfsA in a viable hydride transfer orientation. The substrate 1,4-benzoquinone and the product hydroquinone are positioned close to the FMN N5 in the respective crystal structures with NfsA, suitable for reaction, but are mobile within the active site. The structure with a second FMN, bound as a ligand, shows that a mobile loop in the free protein forms a phosphate-binding pocket. NfsA is specific for NADPH and a similar conformational change, forming a phosphate-binding pocket, is likely to also occur with the natural cofactor.


Assuntos
Antibacterianos/metabolismo , Benzoquinonas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Nitrofurantoína/metabolismo , Nitrorredutases/metabolismo , Antibacterianos/química , Benzoquinonas/química , Sítios de Ligação/genética , Biocatálise , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mononucleotídeo de Flavina/química , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , NADP/metabolismo , Nitrofurantoína/química , Nitrorredutases/química , Nitrorredutases/genética , Oxirredução , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
4.
Cancer Immunol Immunother ; 61(5): 615-28, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22021067

RESUMO

4-1BB ligation co-stimulates T cell activation, and agonistic antibodies have entered clinical trials. Natural killer (NK) cells also express 4-1BB following activation and are implicated in the anti-tumour efficacy of 4-1BB stimulation in mice; however, the response of human NK cells to 4-1BB stimulation is not clearly defined. Stimulation of non-adherent PBMC with OVCAR-3 cells expressing 4-1BB ligand (4-1BBL) or IL-12 resulted in preferential expansion of the NK cell population, while the combination 4-1BBL + IL-12 was superior for the activation and proliferation of functional NK cells from healthy donors and patients with renal cell or ovarian carcinoma, supporting long-term (21 day) NK cell proliferation. The expanded NK cells are predominantly CD56(bright), and we show that isolated CD56(dim)CD16(+) NK cells can switch to a CD56(bright)CD16(-) phenotype and proliferate in response to 4-1BBL + IL-12. Whereas 4-1BB upregulation on NK cells in response to 4-1BBL required 'help' from other PBMC, it could be induced on isolated NK cells by IL-12, but only in the presence of target (OVCAR-3) cells. Following primary stimulation with OVCAR-3 cells expressing 4-1BBL + IL-12 and subsequent resting until day 21, NK cells remained predominantly CD56(bright) and retained both high cytotoxic capability against K562 targets and enhanced ability to produce IFNγ relative to NK cells in PBMC. These data support the concept that NK cells could contribute to anti-tumour activity of 4-1BB agonists in humans and suggest that combining 4-1BB-stimulation with IL-12 could be beneficial for ex vivo or in vivo expansion and activation of NK cells for cancer immunotherapy.


Assuntos
Ligante 4-1BB/imunologia , Interleucina-12/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Neoplasias/imunologia , Neoplasias/patologia , Ligante 4-1BB/biossíntese , Ligante 4-1BB/genética , Antígeno CD56/imunologia , Processos de Crescimento Celular/genética , Processos de Crescimento Celular/imunologia , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/imunologia , Humanos , Interferon gama/imunologia , Interleucina-12/biossíntese , Interleucina-12/genética , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Neoplasias/genética , Fenótipo , Receptores de IgG/imunologia , Regulação para Cima
5.
FEBS Lett ; 596(18): 2425-2440, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35648111

RESUMO

Nitroreductases activate nitroaromatic antibiotics and cancer prodrugs to cytotoxic hydroxylamines and reduce quinones to quinols. Using steady-state and stopped-flow kinetics, we show that the Escherichia coli nitroreductase NfsA is 20-50 fold more active with NADPH than with NADH and that product release may be rate-limiting. The crystal structure of NfsA with NADP+ shows that a mobile loop forms a phosphate-binding pocket. The nicotinamide ring and nicotinamide ribose are mobile, as confirmed in molecular dynamics (MD) simulations. We present a model of NADPH bound to NfsA. Only one NADP+ is seen bound to the NfsA dimers, and MD simulations show that binding of a second NADP(H) cofactor is unfavourable, suggesting that NfsA and other members of this protein superfamily may have a half-of-sites mechanism.


Assuntos
Proteínas de Escherichia coli , Pró-Fármacos , Antibacterianos , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroquinonas , Hidroxilaminas , Cinética , NAD/metabolismo , NADP/metabolismo , Niacinamida , Nitrorredutases/química , Nitrorredutases/metabolismo , Fosfatos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Quinonas
6.
Bioorg Med Chem Lett ; 21(13): 3986-91, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21620697

RESUMO

A series of nitrobenzyl phosphoramide mustards and their analogs was designed and synthesized to explore their structure-activity relationships as substrates of nitroreductases from Escherichia coli and trypanosomes and as potential antiproliferative and antiparasitic agents. The position of the nitro group on the phenyl ring was important with the 4-nitrobenzyl phosphoramide mustard (1) offering the best combination of enzyme activity and antiproliferative effect against both mammalian and trypanosomatid cells. A preference was observed for halogen substitutions ortho to benzyl phosphoramide mustard but distinct differences were found in their SAR of substituted 4-nitrobenzyl phosphoramide mustards in E. coli nitroreductase-expressing cells and in trypanosomatids expressing endogenous nitroreductases.


Assuntos
Leishmania/efeitos dos fármacos , Compostos de Mostarda Nitrogenada/síntese química , Nitrorredutases/metabolismo , Compostos Organofosforados/síntese química , Pró-Fármacos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Escherichia coli/enzimologia , Humanos , Concentração Inibidora 50 , Compostos de Mostarda Nitrogenada/química , Compostos de Mostarda Nitrogenada/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Mol Ther ; 18(11): 1960-71, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20808288

RESUMO

Oncolytic adenoviruses are promising anticancer agents due to their ability to self-amplify at the tumor mass. However, tumor stroma imposes barriers difficult to overcome by these agents. Transgene expression is a valuable strategy to counteract these limitations and to enhance antitumor activity. For this purpose, the genetic backbone in which the transgene is inserted should be optimized to render transgene expression compatible with the adenovirus replication cycle and to keep genome size within the encapsidation size limit. In order to design a potent and selective oncolytic adenovirus that keeps intact all the viral functions with minimal increase in genome size, we inserted palindromic E2F-binding sites into the endogenous E1A promoter. The insertion of these sites controlling E1A-Δ24 results in a low systemic toxicity profile in mice. Importantly, the E2F-binding sites also increased the cytotoxicity and the systemic antitumor activity relative to wild-type adenovirus in all cancer models tested. The low toxicity and the increased potency results in improved antitumor efficacy after systemic injection and increased survival of mice carrying tumors. Furthermore, the constrained genome size of this backbone allows an efficient and potent expression of transgenes, indicating that this virus holds promise for overcoming the limitations of oncolytic adenoviral therapy.


Assuntos
Adenoviridae/genética , Proteínas E1A de Adenovirus/genética , Terapia Genética , Neoplasias/terapia , Vírus Oncolíticos/fisiologia , Regiões Promotoras Genéticas/genética , Proteína do Retinoblastoma/fisiologia , Proteínas E1A de Adenovirus/metabolismo , Animais , Western Blotting , Efeito Citopatogênico Viral , Fator de Transcrição E2F1/metabolismo , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neoplasias/virologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transgenes/fisiologia , Células Tumorais Cultivadas , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cancer ; 9: 52, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20211016

RESUMO

BACKGROUND: CD40 and its ligand (CD40L) play a critical role in co-ordinating immune responses. CD40 is also expressed in lymphoid malignancies and a number of carcinomas. In carcinoma cells the physiological outcome of CD40 ligation depends on the level of receptor engagement with low levels promoting cell survival and high levels inducing cell death. The most profound induction of cell death in carcinoma cells is induced by membrane-bound rather than recombinant soluble CD40L, but like other TNF family ligands, it is cleaved from the membrane by matrix metalloproteinases. RESULTS: We have generated a replication-deficient adenovirus expressing a mutant CD40L that is resistant to metalloproteinase cleavage such that ligand expression is retained at the cell membrane. Here we show that the mutated, cleavage-resistant form of CD40L is a more potent inducer of apoptosis than wild-type ligand in CD40-positive carcinoma cell lines. Since transgene expression via replication-deficient adenovirus vectors in vivo is low, we have also engineered a conditionally replicating E1A-CR2 deleted adenovirus to express mutant CD40L, resulting in significant amplification of ligand expression and consequent enhancement of its therapeutic effect. CONCLUSIONS: Combined with numerous studies demonstrating its immunotherapeutic potential, these data provide a strong rationale for the exploitation of the CD40-CD40L pathway for the treatment of solid tumours.


Assuntos
Adenoviridae/fisiologia , Apoptose , Ligante de CD40/metabolismo , Metaloproteases/metabolismo , Neoplasias/patologia , Replicação Viral/fisiologia , Adenoviridae/efeitos dos fármacos , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Ligante de CD40/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Metaloproteases/antagonistas & inibidores , Dados de Sequência Molecular , Mutação/genética , Inibidores de Proteases/farmacologia , Replicação Viral/efeitos dos fármacos
9.
Mol Ther ; 17(7): 1292-9, 2009 07.
Artigo em Inglês | MEDLINE | ID: mdl-19367257

RESUMO

We report a phase I/II clinical trial in prostate cancer (PCa) using direct intraprostatic injection of a replication defective adenovirus vector (CTL102) encoding bacterial nitroreductase (NTR) in conjunction with systemic prodrug CB1954. One group of patients with localized PCa scheduled for radical prostatectomy received virus alone, prior to surgery, in a dose escalation to establish safety, tolerability, and NTR expression. A second group with local failure following primary treatment received virus plus prodrug to establish safety and tolerability. Based on acceptable safety data and indications of prostate-specific antigen (PSA) responses, an extended cohort received virus at a single dose level plus prodrug. The vector was well tolerated with minimal side effects, had a short half-life in the circulation, and stimulated a robust antibody response. Immunohistochemistry of resected prostate demonstrated NTR staining in tumor and glandular epithelium at all dose levels [5 x 10(10)-1 x 10(12) virus particles (vp)]. A total of 19 patients received virus plus prodrug and 14 of these had a repeat treatment; minimal toxicity was observed and there was preliminary evidence of change in PSA kinetics, with an increase in the time to 10% PSA progression in 6 out of 18 patients at 6 months.


Assuntos
Adenoviridae/genética , Antineoplásicos/uso terapêutico , Aziridinas/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos/genética , Nitrorredutases/fisiologia , Pró-Fármacos/uso terapêutico , Neoplasias da Próstata/terapia , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Nitrorredutases/genética , Neoplasias da Próstata/tratamento farmacológico
10.
Biochemistry ; 48(32): 7665-72, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19580253

RESUMO

The enzyme nitroreductase, NfsB, from Escherichia coli has entered clinical trials for cancer gene therapy with the prodrug CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, CB1954 is a poor substrate for the enzyme. Previously we made several NfsB mutants that show better activity with CB1954 in a cell-killing assay in E. coli. Here we compare the kinetic parameters of wild-type NfsB with CB1954 to those of the most active single, double, and triple mutants isolated to date. For wild-type NfsB the global kinetic parameters for both k(cat) and K(m) for CB1954 are about 20-fold higher than previously estimated; however, the measured specificity constant, k(cat)/K(m) is the same. All of the mutants are more active with CB1954 than the wild-type enzyme, the most active mutant showing about 100-fold improved specificity constant with CB1954 over the wild-type protein with little effect on k(cat). This enhancement in specificity constants for the mutants is not seen with the antibiotic nitrofurazone as substrate, leading to reversed nitroaromatic substrate selectivity for the double and triple mutants. However, similar enhancements in specificity constants are found with the quinone menadione. Stopped-flow kinetic studies suggest that the rate-determining step of the reaction is likely to be the release of products. The most active mutant is also selective for the 4-nitro group of CB1954, rather than the 2-nitro group, giving the more cytotoxic reduction product. The double and triple mutants should be much more effective enzymes for use with CB1954 in prodrug-activation gene therapy.


Assuntos
Antineoplásicos/metabolismo , Aziridinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Mutação , Nitrorredutases/metabolismo , Pró-Fármacos/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Aziridinas/química , Aziridinas/uso terapêutico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Estrutura Molecular , Nitrofurazona/química , Nitrofurazona/metabolismo , Nitrorredutases/genética , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Estrutura Terciária de Proteína , Vitamina K 3/química , Vitamina K 3/metabolismo , Vitaminas/química , Vitaminas/metabolismo
11.
Cell Immunol ; 256(1-2): 39-46, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19217084

RESUMO

Binding of CD80/86 to CD28 is regarded as the main T cell costimulatory interaction. However, CD28 downregulates soon after T cell activation. To investigate potential cross-interaction between CD137 (4-1BB) and CD28, we stimulated T cells with anti-CD3 in the presence of A549 lung carcinoma cells expressing CD80/CD86 and 4-1BBL molecules, transduced into the cells using recombinant non-replicating adenoviruses. Following initial T cell proliferation, the proportion of CD28(+) cells in both CD4(+) and CD8(+) populations was rapidly reduced by CD80/86 costimulation, whereas cultures costimulated with just 4-1BBL continued to express CD28. CD28 was also downregulated in cultures costimulated with both CD80/86 and 4-1BBL. Interestingly, in cells costimulated with CD80/86 that had downregulated CD28 expression and ceased to proliferate, reactivation of proliferation by 4-1BBL costimulation also restored their CD28 expression. These findings show a positive effect of CD137 signalling on CD28 expression, similar to the effect of CD28 engagement on 4-1BB expression during the initial phases of T cell activation. Moreover, they point to the importance of signals through 4-1BB for the purposes of ex-vivo T cell activation and expansion.


Assuntos
Ligante 4-1BB/metabolismo , Antígenos CD28/metabolismo , Linfócitos T/imunologia , Ligante 4-1BB/genética , Adenoviridae/genética , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Vetores Genéticos , Humanos , Técnicas In Vitro , Ativação Linfocitária , Linfócitos T/citologia , Transdução Genética
12.
J Mol Biol ; 368(2): 481-92, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17350040

RESUMO

Escherichia coli nitroreductase (NTR) is a flavoprotein that reduces a variety of quinone and nitroaromatic substrates. Among these substrates is the prodrug 5-[aziridin-1-yl]-2,4-dinitrobenzamide (CB1954) that is activated by NTR to form two products, one of which is highly cytotoxic. NTR in combination with CB1954 has entered clinical trials for virus-directed enzyme-prodrug therapy of cancer. Enhancing the catalytic efficiency of NTR for CB1954 is likely to improve the therapeutic potential of this system. We previously identified a number of mutants at six positions around the active site of NTR that showed enhanced sensitisation to CB1954 in an E. coli cell-killing assay. In this study we have purified improved mutants at each of these positions and determined their steady-state kinetic parameters for CB1954 and for the antibiotic nitrofurazone. We have also made a double mutant, combining two of the most beneficial single mutations. All the mutants show enhanced specificity constants for CB1954, and, apart from N71S, the enhancement is selective for CB1954 over nitrofurazone. One mutant, T41L, also shows an increase in selectivity for reducing the 4-nitro group of CB1954 rather than the 2-nitro group. We have determined the three-dimensional structures of selected mutants bound to the substrate analogue nicotinic acid, using X-ray crystallography. The N71S mutation affects interactions of the FMN cofactor, while mutations at T41 and F124 affect the interactions with nicotinic acid. The structure of double mutant N71S/F124K combines the effects of the two individual single mutations, but it gives a greater selective enhancement of activity with CB1954 over nitrofurazone than either of these, and the highest specificity constant for CB1954 of all the mutations studied.


Assuntos
Aziridinas/metabolismo , Escherichia coli/enzimologia , Proteínas Mutantes/química , Nitrorredutases/química , Pró-Fármacos/metabolismo , Aziridinas/química , Sítios de Ligação , Catálise , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Hidroxilamina , Cinética , Modelos Moleculares , Mutação/genética , Niacina/metabolismo , Nitrofurazona/metabolismo , Oxirredução , Estrutura Secundária de Proteína , Especificidade por Substrato
13.
J Med Chem ; 49(14): 4333-43, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16821793

RESUMO

In efforts to obtain anticancer prodrugs for antibody-directed or gene-directed enzyme prodrug therapy using E. coli nitroreductase, a series of nitrobenzylphosphoramide mustards were designed and synthesized incorporating a strategically placed nitro group in a position para to the benzylic carbon for reductive activation. All analogues were good substrates of E. coli nitroreductase with half-lives between 2.9 and 11.9 min at pH 7.0 and 37 degrees C. Isomers of the 4-nitrophenylcyclophosphamide analogues 3 and 5 with a benzylic oxygen para to the nitro group showed potent selective cytotoxicity in nitroreductase (NTR) expressing cells, while analogues 4 and 6 with a benzylic nitrogen para to the nitro group showed little selective cytotoxicity despite their good substrate activity. These results suggest that good substrate activity and the benzylic oxygen are both required for reductive activation of 4-nitrophenylcyclophosphamide analogues by E. coli nitroreductase. Isomers of analogue 3 showed 23,000-29,000x selective cytotoxicity toward NTR-expressing V79 cells with an IC(50) as low as 27 nM. They are about as active as and 3-4x more selective than 5-aziridinyl-2,4-dinitrobenzamide (CB1954). The acyclic 4-nitrobenzylphosphoramide mustard ((+/-)-7) was found to be the most active and most selective compound for activation by NTR with 170,000x selective cytotoxicity toward NTR-expressing V79 cells and an IC(50) of 0.4 nM. Compound (+/-)-7also exhibited good bystander effect compared to 5-aziridinyl-2,4-dinitrobenzamide. The low IC(50), high selectivity, and good bystander effects of nitrobenzylphosphoramide mustards in NTR-expressing cells suggest that they could be used in combination with E. coli nitroreductase in enzyme prodrug therapy.


Assuntos
Antineoplásicos/síntese química , Proteínas de Escherichia coli/metabolismo , Nitrorredutases/metabolismo , Mostardas de Fosforamida/síntese química , Pró-Fármacos/síntese química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Desenho de Fármacos , Ativação Enzimática , Proteínas de Escherichia coli/genética , Humanos , Nitrorredutases/genética , Mostardas de Fosforamida/química , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Transfecção
14.
Cancer Res ; 63(17): 5532-7, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-14500391

RESUMO

Escherichia coli nitroreductase (NTR) activates the prodrug CB1954 to a cytotoxic derivative, allowing selective sensitization of NTR-expressing cells or tumors to the prodrug. This is one of several enzyme-prodrug combinations that are under development for cancer gene therapy, and the system has now entered clinical trials. Enhancing the catalytic efficiency of NTR for CB1954 could improve its therapeutic potential. From the crystal structure of an enzyme-ligand complex, we identified nine amino acid residues within the active site that could directly influence prodrug binding and catalysis. Mutant libraries were generated for each of these residues and clones screened for their ability to sensitize E. coli to CB1954. Amino acid substitutions at six positions conferred markedly greater sensitivity to CB1954 than did the WT enzyme; the best mutants, at residue F124, resulted in approximately 5-fold improvement. Using an adenovirus vector, we introduced the F124K NTR mutant into human SK-OV-3 ovarian carcinoma cells and showed it to be approximately 5-fold more potent in sensitizing the cells to CB1954 at the clinically relevant prodrug concentration of 1 micro M than was the WT enzyme. Enhanced mutant NTRs such as F124K should improve the efficacy of the NTR/CB1954 combination in cancer gene therapy.


Assuntos
Antineoplásicos/farmacologia , Aziridinas/farmacologia , Nitrorredutases/genética , Nitrorredutases/metabolismo , Pró-Fármacos/farmacologia , Adenoviridae/genética , Antineoplásicos/farmacocinética , Aziridinas/farmacocinética , Escherichia coli/enzimologia , Escherichia coli/genética , Feminino , Vetores Genéticos/genética , Humanos , Mutagênese Sítio-Dirigida , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Pró-Fármacos/farmacocinética , Células Tumorais Cultivadas
15.
J Clin Oncol ; 22(9): 1546-52, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15051757

RESUMO

PURPOSE: Virus-directed enzyme prodrug therapy depends on selective delivery of virus encoding a prodrug-activating enzyme to tumor, followed by systemic treatment with prodrug to achieve high levels of the activated cytotoxic at the intended site of action. The use of the bacterial enzyme nitroreductase to activate CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) to a short lived, highly toxic DNA cross-linking agent has been demonstrated in tumor xenografts. In this study, we report the first clinical trial investigating the feasibility, safety, and transgene expression of a replication-defective adenovirus encoding nitroreductase (CTL102) in patients with liver tumors. PATIENTS AND METHODS: Patients with resectable primary or secondary (colorectal) liver cancer received a single dose of CTL102 delivered by direct intratumoral inoculation 3 to 8 days before surgical resection. RESULTS: Eighteen patients were treated with escalating doses of CTL102 (range, 10(8)-5 x 10(11) virus particles). The vector was well tolerated with minimal side effects, had a short half-life in the circulation, and stimulated a robust antibody response. Dose-related increases in tumoral nitroreductase expression measured by immunohistochemical analysis have been observed. CONCLUSION: Direct intratumoral inoculation of CTL102 to patients with primary and secondary liver cancer is feasible and well tolerated. The high level of nitroreductase expression observed at 1 to 5 x 10(11) virus particles mandates further studies in patients with inoperable tumors who will receive CTL102 and CB1954.


Assuntos
Adenoviridae/genética , Aziridinas/metabolismo , Aziridinas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/secundário , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacologia , Regulação da Expressão Gênica , Terapia Genética/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Nitrorredutases/genética , Nitrorredutases/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/uso terapêutico , Transgenes , Adenoviridae/patogenicidade , Idoso , Aziridinas/farmacocinética , Adutos de DNA , Feminino , Flavoproteínas , Técnicas de Transferência de Genes , Vetores Genéticos , Meia-Vida , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Replicação Viral
16.
Cancer Immunol Res ; 3(10): 1138-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25711537

RESUMO

Infusing virus-specific T cells is effective treatment for rare Epstein-Barr virus (EBV)-associated posttransplant lymphomas, and more limited success has been reported using this approach to treat a far more common EBV-associated malignancy, nasopharyngeal carcinoma (NPC). However, current approaches using EBV-transformed lymphoblastoid cell lines to reactivate EBV-specific T cells for infusion take 2 to 3 months of in vitro culture and favor outgrowth of T cells targeting viral antigens expressed within EBV(+) lymphomas, but not in NPC. Here, we explore T-cell receptor (TCR) gene transfer to rapidly and reliably generate T cells specific for the NPC-associated viral protein LMP2. We cloned a human leukocyte antigen (HLA) A*1101-restricted TCR, which would be widely applicable because 40% of NPC patients carry this HLA allele. Studying both the wild-type and modified forms, we have optimized expression of the TCR and demonstrated high-avidity antigen-specific function (proliferation, cytotoxicity, and cytokine release) in both CD8(+) and CD4(+) T cells. The engineered T cells also inhibited LMP2(+) epithelial tumor growth in a mouse model. Furthermore, transduced T cells from patients with advanced NPC lysed LMP2-expressing NPC cell lines. Using this approach, within a few days large numbers of high-avidity LMP2-specific T cells can be generated reliably to treat NPC, thus providing an ideal clinical setting to test TCR gene transfer without the risk of autoimmunity through targeting self-antigens.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/imunologia , Antígenos HLA-A/imunologia , Herpesvirus Humano 4/imunologia , Neoplasias Nasofaríngeas/etiologia , Receptores de Antígenos de Linfócitos T/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma , Linhagem Celular Tumoral , Citocinas/biossíntese , Citotoxicidade Imunológica , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Imunoterapia , Interferon gama/biossíntese , Camundongos , Dados de Sequência Molecular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/terapia , Transdução Genética , Carga Tumoral , Proteínas da Matriz Viral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Clin Endocrinol Metab ; 88(9): 4472-80, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12970326

RESUMO

Levels of fibroblast growth factor 2 (FGF-2) and its receptor, FGFR1, are elevated in goiter, but whether this is a direct effect of TSH is unknown. We have determined the regulation of FGF-2 and FGFR1 synthesis by TSH in a rat thyroid cell line (FRTL5) and have used a replication-defective adenovirus (RAd) expressing dominant negative FGFR1 (RAdDN-FGFR1) to examine the role of FGFR signaling in vitro and in goiter induced in mice. TSH induced FGF-2 and increased the expression of FGFR1 in FRTL5 cells. Infection of TSH-stimulated FRTL5 cells with RAdDN-FGFR1 inhibited growth and prevented FGF-2-mediated inhibition of (125)I uptake. Similar effects were found in primary cultures of human thyroid follicular cells. For in vivo experiments, male BALB/c mice were injected systemically with RAdDN-FGFR1 or RAd encoding green fluorescent protein, and goiter was simultaneously induced. Mouse thyroid follicles were shown to be transduced with RAd encoding green fluorescent protein. Circulating TSH was elevated comparably in the two groups. In the RAdDN-FGFR1-injected animals, goiter induced over 14 d was significantly smaller, and the vascular volume increase seen in goiter was also diminished. We conclude that the FGF axis is important in thyroid growth and that RAdDN-FGFR1 effectively blocks FGF actions, offering a means to control goitrogenesis.


Assuntos
Adenoviridae/genética , Fator 1 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Regulação da Expressão Gênica/fisiologia , Genes Dominantes/genética , Vetores Genéticos/genética , Bócio/genética , Bócio/prevenção & controle , Glândula Tireoide/metabolismo , Animais , Vasos Sanguíneos/patologia , Western Blotting , Células Cultivadas , AMP Cíclico/farmacologia , Fator 1 de Crescimento de Fibroblastos/biossíntese , Bócio/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Radioimunoensaio , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transdução de Sinais/genética , Testes de Função Tireóidea , Glândula Tireoide/citologia , Tireotropina/farmacologia , Tiroxina/sangue , Tri-Iodotironina/sangue , beta-Galactosidase/análise
18.
J Med Chem ; 46(23): 4818-21, 2003 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-14584930

RESUMO

Cyclic and acyclic nitroaryl phosphoramide mustard analogues were activated by E. coli nitroreductase, an enzyme explored in GDEPT. The more active acyclic 4-nitrobenzyl phosphoramide mustard (7) showed 167 500x selective cytotoxicity toward nitroreductase-expressing V79 cells with an IC(50) as low as 0.4 nM. This is about 100x more active and 27x more selective than CB1954 (1). The superior activity was attributed to its better substrate activity (k(cat)/K(m) 19x better than 1) and/or excellent cytotoxicity of phosphoramide mustard released.


Assuntos
Antineoplásicos Alquilantes/síntese química , Ativadores de Enzimas/síntese química , Escherichia coli/enzimologia , Nitrocompostos/síntese química , Nitrorredutases/metabolismo , Mostardas de Fosforamida/síntese química , Pró-Fármacos/síntese química , Animais , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Ciclofosfamida/análogos & derivados , Ciclofosfamida/síntese química , Ciclofosfamida/farmacologia , Ativadores de Enzimas/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Nitrocompostos/farmacologia , Oxirredução , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/farmacologia , Relação Estrutura-Atividade
19.
J Cancer Res Ther ; 10(3): 665-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313757

RESUMO

INTRODUCTION: The p53 gene therapy showed promising results for treatment of numerous cancers particularly in combination with chemotherapy or radiotherapy. Gene therapy combining two or more treatment options may lead to the synergistic effects between diverse therapies and provide many opportunities in our fight against cancer. AIM: This study focused on the effects of p53 combining with the suicide gene therapy, nitroreductase (NTR)/5-(aziridin-1-yl)-2,4 dinitrobenzamide, on different cancer cell lines. MATERIALS AND METHODS: Effects of adenoviral expressing p53 alone or in combination with wild type (WT) NTR, NTR single mutant, F124N and two NTR double mutants, T41L/N71S and T41L/F70A on survival rate of A549, QU-DB, MCF-7, MDA-MB-468 and DU145 cancer cell lines were determined by MTT assay. Expressions of MDM2 and TP53 transcripts were then assessed by quantitative real-time polymerase chain reaction in p53, NTR and combination of p53 with NTR infected cell lines. RESULTS: According to the results, combination of p53 with NTR double mutant, T41L/F70A or NTR single mutant F124N, showed statistically significant decrease in vitality of all cancer cell lines studied compared with status of IC 50 from p53 or WT NTR and other NTR mutants alone (P < 0.05). Expressions of TP53 and MDM2 were downregulated in all T41L/F70A infected cells except for MCF-7. CONCLUSION: Combination of T41L/F70A NTR with p53 may have more advantages for treatment of different types of cancers compared to the other NTRs and p53 alone. The present study results may open new windows for getting desired outcome in gene therapy of different types of cancer.


Assuntos
Mutação , Neoplasias/genética , Nitrorredutases/genética , Proteína Supressora de Tumor p53/genética , Adenoviridae/genética , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Expressão Gênica , Genes Transgênicos Suicidas , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Concentração Inibidora 50 , Neoplasias/terapia
20.
Biochem Pharmacol ; 79(2): 102-11, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19665450

RESUMO

Prodrug activation gene therapy for cancer involves expressing prodrug-activating enzymes in tumour cells, so they can be selectively killed by systemically administered prodrug. For example, Escherichia colinfsB nitroreductase (E.C. 1.6.99.7)(NTR), sensitises cells to the prodrug CB1954 (5-[aziridin-1-yl]-2,4-dinitrobenzamide), which it converts to a potent DNA-crosslinking agent. However, low catalytic efficiency with this non-natural substrate appears to limit the efficacy of this enzyme prodrug combination for eliminating the target cancer cells. To improve this, we aim to engineer NTR for improved prodrug activation. Previously, a number of single amino acid substitutions at six positions around the active site of the enzyme were found to increase activity, resulting in up to approximately 5-fold enhanced cell sensitisation to CB1954. In this study we have made pairwise combinations among some of the best mutants at each of these 6 sites. A total of 53 double mutants were initially screened in E. coli, then the 7 most promising were inserted into an adenovirus vector and compared in SKOV3 human ovarian carcinoma cells for sensitisation to CB1954 and two alternative prodrugs. The most effective mutants, T41L/N71S and T41L/F70A, were 14-17-fold more potent than WT NTR at sensitising the cancer cells to CB1954. The best mutant for activation of the dinitrobenzamide mustard prodrug SN23862 was T41L/F70A (4.8-fold improvement); and S40A/F124M showed 1.7-fold improvement over WT with the nitrobenzylphosphoramide mustard prodrug LH7. In two tumour xenograft models using SKOV3 or human prostate carcinoma PC3, T41L/N71S NTR demonstrated greater CB1954-dependent anti-tumour activity than WT NTR.


Assuntos
Mutação , Nitrorredutases/genética , Pró-Fármacos/farmacologia , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Humanos , Camundongos , Nitrorredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA