Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(4): 1661-1676, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38084912

RESUMO

Bromodomain and extraterminal (BET) proteins are extensively studied in multiple pathologies, including cancer. BET proteins modulate transcription of various genes, including those synonymous with cancer, such as MYC. Thus, BET inhibitors are a major area of drug development efforts. (+)-JQ1 (JQ1) is the prototype inhibitor and is a common tool to probe BET functions. While showing therapeutic promise, JQ1 is not clinically usable, partly due to metabolic instability. Here, we show that JQ1 and the BET-inactive (-)-JQ1 are agonists of pregnane X receptor (PXR), a nuclear receptor that transcriptionally regulates genes encoding drug-metabolizing enzymes such as CYP3A4, which was previously shown to oxidize JQ1. A PXR-JQ1 co-crystal structure identified JQ1's tert-butyl moiety as a PXR anchor and explains binding by (-)-JQ1. Analogs differing at the tert-butyl lost PXR binding, validating our structural findings. Evaluation in liver cell models revealed both PXR-dependent and PXR-independent modulation of CYP3A4 expression by BET inhibitors. We have characterized a non-BET JQ1 target, a mechanism of physiological JQ1 instability, a biological function of (-)-JQ1, and BET-dependent transcriptional regulation of drug metabolism genes.


Assuntos
Azepinas , Receptor de Pregnano X , Triazóis , Azepinas/química , Azepinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Citocromo P-450 CYP3A/genética , Proteínas Nucleares/metabolismo , Receptor de Pregnano X/química , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Citoplasmáticos e Nucleares , Triazóis/química , Triazóis/farmacologia , Humanos
2.
Proc Natl Acad Sci U S A ; 120(10): e2217804120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848571

RESUMO

Ligand-binding promiscuity in detoxification systems protects the body from toxicological harm but is a roadblock to drug development due to the difficulty in optimizing small molecules to both retain target potency and avoid metabolic events. Immense effort is invested in evaluating metabolism of molecules to develop safer, more effective treatments, but engineering specificity into or out of promiscuous proteins and their ligands is a challenging task. To better understand the promiscuous nature of detoxification networks, we have used X-ray crystallography to characterize a structural feature of pregnane X receptor (PXR), a nuclear receptor that is activated by diverse molecules (with different structures and sizes) to up-regulate transcription of drug metabolism genes. We found that large ligands expand PXR's ligand-binding pocket, and the ligand-induced expansion occurs through a specific unfavorable compound-protein clash that likely contributes to reduced binding affinity. Removing the clash by compound modification resulted in more favorable binding modes with significantly enhanced binding affinity. We then engineered the unfavorable ligand-protein clash into a potent, small PXR ligand, resulting in marked reduction in PXR binding and activation. Structural analysis showed that PXR is remodeled, and the modified ligands reposition in the binding pocket to avoid clashes, but the conformational changes result in less favorable binding modes. Thus, ligand-induced binding pocket expansion increases ligand-binding potential of PXR but is an unfavorable event; therefore, drug candidates can be engineered to expand PXR's ligand-binding pocket and reduce their safety liability due to PXR binding.


Assuntos
Desenvolvimento de Medicamentos , Engenharia , Ligantes , Cristalografia por Raios X , Psicoterapia
3.
Proteins ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699879

RESUMO

Cep57, a vital centrosome-associated protein, recruits essential regulatory enzymes for centriole duplication. Its dysfunction leads to anomalies, including reduced centrioles and mosaic-variegated aneuploidy syndrome. Despite functional investigations, understanding structural aspects and their correlation with functions is partial till date. We present the structure of human Cep57 C-terminal microtubule binding (MT-BD) domain, revealing conserved motifs ensuring functional preservation across evolution. A leucine zipper, with an adjacent possible microtubule-binding region, potentially forms a stabilizing scaffold for microtubule nucleation-accommodating pulling and tension from growing microtubules. This study highlights conserved structural features of Cep57 protein, compares them with other analogous proteins, and explores how protein function is maintained across diverse organisms.

4.
Nucleic Acids Res ; 50(6): 3254-3275, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35212371

RESUMO

The 48 human nuclear receptors (NRs) form a superfamily of transcription factors that regulate major physiological and pathological processes. Emerging evidence suggests that NR crosstalk can fundamentally change our understanding of NR biology, but detailed molecular mechanisms of crosstalk are lacking. Here, we report the molecular basis of crosstalk between the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), where they form a novel heterodimer, resulting in their mutual inhibition. PXR and CAR regulate drug metabolism and energy metabolism. Although they have been broadly perceived as functionally redundant, a growing number of reports suggests a mutual inhibitory relation, but their precise mode of coordinated action remains unknown. Using methods including RNA sequencing, small-angle X-ray scattering and crosslinking mass spectrometry we demonstrate that the mutual inhibition altered gene expression globally and is attributed to the novel PXR-CAR heterodimerization via the same interface used by each receptor to heterodimerize with its functional partner, retinoid X receptor (RXR). These findings establish an unexpected functional relation between PXR, CAR and RXR, change the perceived functional relation between PXR and CAR, open new perspectives on elucidating their role and designing approaches to regulate them, and highlight the importance to comprehensively investigate nuclear receptor crosstalk.


Assuntos
Receptor Constitutivo de Androstano/metabolismo , Receptor de Pregnano X/metabolismo , Dimerização , Regulação da Expressão Gênica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
Angew Chem Int Ed Engl ; 61(31): e202112919, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648650

RESUMO

High-resolution crystal structures highlight the importance of water networks in protein-ligand interactions. However, as these are typically determined at cryogenic temperature, resulting insights may be structurally precise but not biologically accurate. By collecting 10 matched room-temperature and cryogenic datasets of the biomedical target Hsp90α, we identified changes in water networks that impact protein conformations at the ligand binding interface. Water repositioning with temperature repopulates protein ensembles and ligand interactions. We introduce Flipper conformational barcodes to identify temperature-sensitive regions in electron density maps. This revealed that temperature-responsive states coincide with ligand-responsive regions and capture unique binding signatures that disappear upon cryo-cooling. Our results have implications for discovering Hsp90 selective ligands, and, more generally, for the utility of hidden protein and water conformations in drug discovery.


Assuntos
Proteínas , Água , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Ligação Proteica , Conformação Proteica , Proteínas/química , Temperatura
6.
J Biol Chem ; 295(22): 7635-7652, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32317282

RESUMO

Enoyl-acyl carrier protein reductase (FabI) catalyzes a rate-controlling step in bacterial fatty-acid synthesis and is a target for antibacterial drug development. A phylogenetic analysis shows that FabIs fall into four divergent clades. Members of clades 1-3 have been structurally and biochemically characterized, but the fourth clade, found in members of phylum Bacteroidetes, is uncharacterized. Here, we identified the unique structure and conformational changes that distinguish clade 4 FabIs. Alistipes finegoldii is a prototypical Bacteroidetes inhabitant of the gut microbiome. We found that A. finegoldii FabI (AfFabI) displays cooperative kinetics and uses NADH as a cofactor, and its crystal structure at 1.72 Å resolution showed that it adopts a Rossmann fold as do other characterized FabIs. It also disclosed a carboxyl-terminal extension that forms a helix-helix interaction that links the protomers as a unique feature of AfFabI. An AfFabI·NADH crystal structure at 1.86 Å resolution revealed that this feature undergoes a large conformational change to participate in covering the NADH-binding pocket and establishing the water channels that connect the active site to the central water well. Progressive deletion of these interactions led to catalytically compromised proteins that fail to bind NADH. This unique conformational change imparted a distinct shape to the AfFabI active site that renders it refractory to a FabI drug that targets clade 1 and 3 pathogens. We conclude that the clade 4 FabI, found in the Bacteroidetes inhabitants of the gut, have several structural features and conformational transitions that distinguish them from other bacterial FabIs.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Microbioma Gastrointestinal , NAD/química , Sítios de Ligação , Cristalografia por Raios X , Humanos
7.
J Am Chem Soc ; 143(44): 18467-18480, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648292

RESUMO

The human cytochrome P450 (CYP) CYP3A4 and CYP3A5 enzymes metabolize more than one-half of marketed drugs. They share high structural and substrate similarity and are often studied together as CYP3A4/5. However, CYP3A5 preferentially metabolizes several clinically prescribed drugs, such as tacrolimus. Genetic polymorphism in CYP3A5 makes race-based dosing adjustment of tacrolimus necessary to minimize acute rejection after organ transplantation. Moreover, the differential tissue distribution and expression levels of CYP3A4 and CYP3A5 can aggravate toxicity during treatment. Therefore, selective inhibitors of CYP3A5 are needed to distinguish the role of CYP3A5 from that of CYP3A4 and serve as starting points for potential therapeutic development. To this end, we report the crystal structure of CYP3A5 in complex with a previously reported selective inhibitor, clobetasol propionate (CBZ). This is the first CYP3A5 structure with a type I inhibitor, which along with the previously reported substrate-free and type II inhibitor-bound structures, constitute the main CYP3A5 structural modalities. Supported by structure-guided mutagenesis analyses, the CYP3A5-CBZ structure showed that a unique conformation of the F-F' loop in CYP3A5 enables selective binding of CBZ to CYP3A5. Several polar interactions, including hydrogen bonds, stabilize the position of CBZ to interact with this unique F-F' loop conformation. In addition, functional and biophysical assays using CBZ analogs highlight the importance of heme-adjacent moieties for selective CYP3A5 inhibition. Our findings can be used to guide further development of more potent and selective CYP3A5 inhibitors.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Domínio Catalítico , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A/química , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
8.
Nature ; 523(7558): 111-4, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-25985179

RESUMO

Phosphofructokinase-1 (PFK1), the 'gatekeeper' of glycolysis, catalyses the committed step of the glycolytic pathway by converting fructose-6-phosphate to fructose-1,6-bisphosphate. Allosteric activation and inhibition of PFK1 by over ten metabolites and in response to hormonal signalling fine-tune glycolytic flux to meet energy requirements. Mutations inhibiting PFK1 activity cause glycogen storage disease type VII, also known as Tarui disease, and mice deficient in muscle PFK1 have decreased fat stores. Additionally, PFK1 is proposed to have important roles in metabolic reprogramming in cancer. Despite its critical role in glucose flux, the biologically relevant crystal structure of the mammalian PFK1 tetramer has not been determined. Here we report the first structures of the mammalian PFK1 tetramer, for the human platelet isoform (PFKP), in complex with ATP-Mg(2+) and ADP at 3.1 and 3.4 Å, respectively. The structures reveal substantial conformational changes in the enzyme upon nucleotide hydrolysis as well as a unique tetramer interface. Mutations of residues in this interface can affect tetramer formation, enzyme catalysis and regulation, indicating the functional importance of the tetramer. With altered glycolytic flux being a hallmark of cancers, these new structures allow a molecular understanding of the functional consequences of somatic PFK1 mutations identified in human cancers. We characterize three of these mutations and show they have distinct effects on allosteric regulation of PFKP activity and lactate production. The PFKP structural blueprint for somatic mutations as well as the catalytic site can guide therapeutic targeting of PFK1 activity to control dysregulated glycolysis in disease.


Assuntos
Modelos Moleculares , Neoplasias/enzimologia , Fosfofrutoquinase-1/química , Fosfofrutoquinase-1/genética , Ativação Enzimática , Humanos , Microscopia Eletrônica de Transmissão , Mutação/genética , Neoplasias/genética , Fosfofrutoquinase-1/ultraestrutura , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Nat Chem Biol ; 14(2): 156-162, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251719

RESUMO

Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.


Assuntos
Perfilação da Expressão Gênica , Sialiltransferases/química , Animais , Baculoviridae/metabolismo , Cristalografia por Raios X , Monofosfato de Citidina/química , Vetores Genéticos , Glicosídeo Hidrolases/química , Glicosilação , Células HEK293 , Humanos , Insetos , Cinética , Proteínas Recombinantes/química , Sulfotransferases/química
10.
Proc Natl Acad Sci U S A ; 111(44): E4697-705, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25339443

RESUMO

Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1-9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ubiquinona/biossíntese , Animais , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/genética , Oxigenases de Função Mista , Estrutura Terciária de Proteína , Ubiquinona/genética
11.
PLoS Pathog ; 10(3): e1003948, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24626239

RESUMO

The Type IV Secretion System (T4SS) is the only bacterial secretion system known to translocate both DNA and protein substrates. The VirB/D4 system from Agrobacterium tumefaciens is a typical T4SS. It facilitates the bacteria to translocate the VirD2-T-DNA complex to the host cell cytoplasm. In addition to protein-DNA complexes, the VirB/D4 system is also involved in the translocation of several effector proteins, including VirE2, VirE3 and VirF into the host cell cytoplasm. These effector proteins aid in the proper integration of the translocated DNA into the host genome. The VirD2-binding protein (VBP) is a key cytoplasmic protein that recruits the VirD2-T-DNA complex to the VirD4-coupling protein (VirD4 CP) of the VirB/D4 T4SS apparatus. Here, we report the crystal structure and associated functional studies of the C-terminal domain of VBP. This domain mainly consists of α-helices, and the two monomers of the asymmetric unit form a tight dimer. The structural analysis of this domain confirms the presence of a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) fold. Biophysical studies show that VBP is a dimer in solution and that the HEPN domain is the dimerization domain. Based on structural and mutagenesis analyses, we show that substitution of key residues at the interface disrupts the dimerization of both the HEPN domain and full-length VBP. In addition, pull-down analyses show that only dimeric VBP can interact with VirD2 and VirD4 CP. Finally, we show that only Agrobacterium harboring dimeric full-length VBP can induce tumors in plants. This study sheds light on the structural basis of the substrate recruiting function of VBP in the T4SS pathway of A. tumefaciens and in other pathogenic bacteria employing similar systems.


Assuntos
Agrobacterium tumefaciens/química , Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos/fisiologia , Tumores de Planta/parasitologia , Multimerização Proteica , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Calorimetria , Dicroísmo Circular , Cristalografia por Raios X , Interações Hospedeiro-Parasita , Kalanchoe/parasitologia , Dados de Sequência Molecular , Multimerização Proteica/fisiologia
12.
Nat Chem Biol ; 10(5): 386-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705591

RESUMO

A challenge in the computational design of enzymes is that multiple properties, including substrate binding, transition state stabilization and product release, must be simultaneously optimized, and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate reactivity. Following optimization by yeast display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest that the designs could provide the basis for a new class of organophosphate capture agents.


Assuntos
Domínio Catalítico , Serina/metabolismo , Cristalografia por Raios X , Hidrolases/metabolismo , Modelos Moleculares , Estrutura Molecular
13.
Nat Chem Biol ; 9(5): 333-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23542644

RESUMO

How living organisms create carbon-sulfur bonds during the biosynthesis of critical sulfur-containing compounds is still poorly understood. The methylthiotransferases MiaB and RimO catalyze sulfur insertion into tRNAs and ribosomal protein S12, respectively. Both belong to a subgroup of radical-S-adenosylmethionine (radical-SAM) enzymes that bear two [4Fe-4S] clusters. One cluster binds S-adenosylmethionine and generates an Ado• radical via a well-established mechanism. However, the precise role of the second cluster is unclear. For some sulfur-inserting radical-SAM enzymes, this cluster has been proposed to act as a sacrificial source of sulfur for the reaction. In this paper, we report parallel enzymological, spectroscopic and crystallographic investigations of RimO and MiaB, which provide what is to our knowledge the first evidence that these enzymes are true catalysts and support a new sulfation mechanism involving activation of an exogenous sulfur cosubstrate at an exchangeable coordination site on the second cluster, which remains intact during the reaction.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Thermotoga maritima/metabolismo , Biocatálise , Cristalografia por Raios X , Radicais Livres/metabolismo , Modelos Moleculares , Estrutura Molecular , Enxofre/química , Sulfurtransferases/química , Thermotoga maritima/enzimologia
14.
J Biol Chem ; 288(48): 34680-98, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24155237

RESUMO

Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases.


Assuntos
Cristalografia por Raios X , Polissacarídeos/química , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Animais , Bactérias/enzimologia , Bactérias/genética , Sítios de Ligação , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polissacarídeos/biossíntese , Conformação Proteica , Ratos , Ácidos Siálicos/química , Sialiltransferases/metabolismo , Relação Estrutura-Atividade , Suínos/genética , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
15.
Nat Commun ; 15(1): 4054, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744881

RESUMO

Nuclear receptors are ligand-activated transcription factors that can often be useful drug targets. Unfortunately, ligand promiscuity leads to two-thirds of receptors remaining clinically untargeted. PXR is a nuclear receptor that can be activated by diverse compounds to elevate metabolism, negatively impacting drug efficacy and safety. This presents a barrier to drug development because compounds designed to target other proteins must avoid PXR activation while retaining potency for the desired target. This problem could be avoided by using PXR antagonists, but these compounds are rare, and their molecular mechanisms remain unknown. Here, we report structurally related PXR-selective agonists and antagonists and their corresponding co-crystal structures to describe mechanisms of antagonism and selectivity. Structural and computational approaches show that antagonists induce PXR conformational changes incompatible with transcriptional coactivator recruitment. These results guide the design of compounds with predictable agonist/antagonist activities and bolster efforts to generate antagonists to prevent PXR activation interfering with other drugs.


Assuntos
Receptor de Pregnano X , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/antagonistas & inibidores , Humanos , Ligantes , Cristalografia por Raios X , Células Hep G2 , Modelos Moleculares , Ligação Proteica
16.
Biochemistry ; 52(48): 8663-76, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24215428

RESUMO

Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded ß barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Liases/química , Ficobiliproteínas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Análise Espectral
17.
J Am Chem Soc ; 135(36): 13393-9, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23924187

RESUMO

Genetically encoded unnatural amino acids could facilitate the design of proteins and enzymes of novel function, but correctly specifying sites of incorporation and the identities and orientations of surrounding residues represents a formidable challenge. Computational design methods have been used to identify optimal locations for functional sites in proteins and design the surrounding residues but have not incorporated unnatural amino acids in this process. We extended the Rosetta design methodology to design metalloproteins in which the amino acid (2,2'-bipyridin-5yl)alanine (Bpy-Ala) is a primary ligand of a bound metal ion. Following initial results that indicated the importance of buttressing the Bpy-Ala amino acid, we designed a buried metal binding site with octahedral coordination geometry consisting of Bpy-Ala, two protein-based metal ligands, and two metal-bound water molecules. Experimental characterization revealed a Bpy-Ala-mediated metalloprotein with the ability to bind divalent cations including Co(2+), Zn(2+), Fe(2+), and Ni(2+), with a Kd for Zn(2+) of ∼40 pM. X-ray crystal structures of the designed protein bound to Co(2+) and Ni(2+) have RMSDs to the design model of 0.9 and 1.0 Šrespectively over all atoms in the binding site.


Assuntos
Aminoácidos/química , Cobalto/química , Biologia Computacional , Metaloproteínas/síntese química , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular
18.
J Struct Funct Genomics ; 13(3): 177-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22843345

RESUMO

Recent studies of signal transduction in bacteria have revealed a unique second messenger, bis-(3'-5')-cyclic dimeric GMP (c-di-GMP), which regulates transitions between motile states and sessile states, such as biofilms. C-di-GMP is synthesized from two GTP molecules by diguanylate cyclases (DGC). The catalytic activity of DGCs depends on a conserved GG(D/E)EF domain, usually part of a larger multi-domain protein organization. The domains other than the GG(D/E)EF domain often control DGC activation. This paper presents the 1.83 Å crystal structure of an isolated catalytically competent GG(D/E)EF domain from the A1U3W3_MARAV protein from Marinobacter aquaeolei. Co-crystallization with GTP resulted in enzymatic synthesis of c-di-GMP. Comparison with previously solved DGC structures shows a similar orientation of c-di-GMP bound to an allosteric regulatory site mediating feedback inhibition of the enzyme. Biosynthesis of c-di-GMP in the crystallization reaction establishes that the enzymatic activity of this DGC domain does not require interaction with regulatory domains.


Assuntos
Proteínas de Bactérias/química , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/química , Marinobacter/química , Fósforo-Oxigênio Liases/química , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X/métodos , GMP Cíclico/biossíntese , GMP Cíclico/química , Ativação Enzimática , Guanosina Trifosfato/química , Marinobacter/enzimologia , Dados de Sequência Molecular , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Análise de Sequência de Proteína
19.
J Struct Funct Genomics ; 13(3): 155-62, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22865330

RESUMO

The protein Pspto_3016 is a 117-residue member of the protein domain family PF04237 (DUF419), which is to date a functionally uncharacterized family of proteins. In this report, we describe the structure of Pspto_3016 from Pseudomonas syringae solved by both solution NMR and X-ray crystallography at 2.5 Å resolution. In both cases, the structure of Pspto_3016 adopts a "double wing" α/ß sandwich fold similar to that of protein YjbR from Escherichia coli and to the C-terminal DNA binding domain of the MotA transcription factor (MotCF) from T4 bacteriophage, along with other uncharacterized proteins. Pspto_3016 was selected by the Protein Structure Initiative of the National Institutes of Health and the Northeast Structural Genomics Consortium (NESG ID PsR293).


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Proteínas de Ligação a DNA/química , Espectroscopia de Ressonância Magnética/métodos , Proteômica/métodos , Pseudomonas syringae/química , Motivos de Aminoácidos , DNA Bacteriano/química , Modelos Genéticos , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Pseudomonas syringae/genética , Soluções/química
20.
J Struct Funct Genomics ; 13(3): 163-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22843344

RESUMO

Protein domain family PF06855 (DUF1250) is a family of small domains of unknown function found only in bacteria, and mostly in the order Bacillales and Lactobacillales. Here we describe the solution NMR or X-ray crystal structures of three representatives of this domain family, MW0776 and MW1311 from Staphyloccocus aureus and yozE from Bacillus subtilis. All three proteins adopt a four-helix motif similar to sterile alpha motif (SAM) domains. Phylogenetic analysis classifies MW1311 and yozE as functionally equivalent proteins of the UPF0346 family of unknown function, but excludes MW0776, which likely has a different biological function. Our structural characterization of the three domains supports this separation of function. The structures of MW0776, MW1311, and yozE constitute the first structural representatives from this protein domain family.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Dobramento de Proteína , Staphylococcus aureus/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus subtilis/classificação , Bacillus subtilis/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Clonagem Molecular , Cristalografia por Raios X , Genes Bacterianos , Espectroscopia de Ressonância Magnética/métodos , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade da Espécie , Staphylococcus aureus/classificação , Staphylococcus aureus/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA