Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Cell Biol ; 223(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38619450

RESUMO

Using an engineered mitochondrial clogger, Krakowczyk et al. (https://doi.org/10.1083/jcb.202306051) identified the OMA1 protease as a critical component that eliminates import failure at the TOM translocase in mammalian cells, providing a novel quality control mechanism that is distinct from those described in yeast.


Assuntos
Mamíferos , Metaloproteases , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais , Animais , Mitocôndrias , Peptídeo Hidrolases , Saccharomyces cerevisiae/genética , Metaloproteases/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Res Sq ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39011118

RESUMO

Protein biotinylation has been widely used in biotechnology with various labeling and enrichment strategies. However, different enrichment strategies have not been systematically evaluated due to the lack of a benchmarking model for fair comparison. Most biotinylation proteomics workflows suffer from lengthy experimental steps, non-specific bindings, limited throughput, and experimental variability. To address these challenges, we designed a two-proteome model, where biotinylated yeast proteins were spiked in unlabeled human proteins, allowing us to distinguish true enrichment from non-specific bindings. Using this benchmarking model, we compared common biotinylation proteomics methods and provided practical selection guidelines. We significantly optimized and shortened sample preparation from 3 days to 9 hours, enabling fully-automated 96-well plate sample processing. Next, we applied this optimized and automated workflow for proximity labeling to investigate the intricate interplay between mitochondria and lysosomes in living cells under both healthy state and mitochondrial damage. Our results suggested a time-dependent proteome remodeling and dynamic translocation within mitochondria and between mitochondria and lysosomes upon mitochondrial damage. This newly established benchmarking model and the fully-automated 9-hour workflow can be readily applied to the broad fields of protein biotinylation to study protein interaction and organelle dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA