Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mar Drugs ; 22(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535470

RESUMO

Cyclic imines are a class of lipophilic shellfish toxins comprising gymnodimines, spirolides, pinnatoxins, portimines, pteriatoxins, prorocentrolides, spiro-prorocentrimine, symbiomines and kabirimine. They are structurally diverse, but all share an imine moiety as part of a bicyclic ring system. These compounds are produced by marine microalgal species and are characterized by the rapid death that they induce when injected into mice. Cyclic imines have been detected in a range of shellfish species collected from all over the world, which raises the question as to whether they present a food safety risk. The European Food Safety Authority (EFSA) considers them to be an emerging food safety issue, and in this review, the risk posed by these toxins to shellfish consumers is assessed by collating all available occurrence and toxicity data. Except for pinnatoxins, the risk posed to human health by the cyclic imines appears low, although this is based on only a limited dataset. For pinnatoxins, two different health-based guidance values have been proposed at which the concentration should not be exceeded in shellfish (268 and 23 µg PnTX/kg shellfish flesh), with the discrepancy caused by the application of different uncertainty factors. Pinnatoxins have been recorded globally in multiple shellfish species at concentrations of up to 54 times higher than the lower guidance figure. Despite this observation, pinnatoxins have not been associated with recorded human illness, so it appears that the lower guidance value may be conservative. However, there is insufficient data to generate a more robust guidance value, so additional occurrence data and toxicity information are needed.


Assuntos
Microalgas , Alimentos Marinhos , Humanos , Animais , Camundongos , Frutos do Mar , Inocuidade dos Alimentos , Iminas
2.
J Nat Prod ; 84(7): 2035-2042, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34170700

RESUMO

Pinnatoxin G is a cyclic imine neurotoxin produced by dinoflagellates that has been reported in shellfish. Like other members of the pinnatoxin family, it has been shown to have its effects via antagonism of the nicotinic acetylcholine receptors, with preferential binding to the α7 subunit often upregulated in cancer. Because increased activity of α7 nicotinic acetylcholine receptors contributes to increased growth and resistance to apoptosis, the effect of pinnatoxin G on cancer cell viability was tested. In a panel of six cancer cell lines, all cell types lost viability, but HT29 colon cancer and LN18 and U373 glioma cell lines were more sensitive than MDA-MB-231 breast cancer cells, PC3 prostate cancer cells, and U87 glioma cells, correlating with expression levels of α7, α4, and α9 nicotinic acetylcholine receptors. Some loss of cell viability could be attributed to cell cycle arrest, but significant levels of classical apoptosis were found, characterized by caspase activity, phosphatidylserine exposure, mitochondrial membrane permeability, and fragmented DNA. Intracellular Ca2+ levels also dropped immediately upon pinnatoxin G treatment, which may relate to antagonism of nicotinic acetylcholine receptor-mediated Ca2+ inflow. In conclusion, pinnatoxin G can decrease cancer cell viability, with both cytostatic and cytotoxic effects.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Iminas/farmacologia , Antagonistas Nicotínicos/farmacologia , Compostos de Espiro/farmacologia , Cálcio , Linhagem Celular Tumoral , Humanos , Toxinas Marinhas/farmacologia , Estrutura Molecular , Receptores Nicotínicos
3.
Biofouling ; 34(8): 950-961, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30539667

RESUMO

A range of natural products from marine invertebrates, bacteria and fungi have been assessed as leads for nature-inspired antifouling (AF) biocides, but little attention has been paid to microalgal-derived compounds. This study assessed the AF activity of the spirocyclic imine portimine (1), which is produced by the benthic mat-forming dinoflagellate Vulcanodinium rugosum. Portimine displayed potent AF activity in a panel of four macrofouling bioassays (EC50 0.06-62.5 ng ml-1), and this activity was distinct from that of the related compounds gymnodimine-A (2), 13-desmethyl spirolide C (3), and pinnatoxin-F (4). The proposed mechanism of action for portimine is induction of apoptosis, based on the observation that portimine inhibited macrofouling organisms at developmental stages known to involve apoptotic processes. Semisynthetic modification of select portions of the portimine molecule was subsequently undertaken. Observed changes in bioactivity of the resulting semisynthetic analogues of portimine were consistent with portimine's unprecedented 5-membered imine ring structure playing a central role in its AF activity.


Assuntos
Alcaloides/farmacologia , Incrustação Biológica/prevenção & controle , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hidrocarbonetos Cíclicos/farmacologia , Iminas/farmacologia , Microalgas/química , Compostos de Espiro/farmacologia , Alcaloides/síntese química , Alcaloides/química , Organismos Aquáticos/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/química , Hidrocarbonetos Cíclicos/síntese química , Hidrocarbonetos Cíclicos/química , Iminas/síntese química , Iminas/química , Estrutura Molecular , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
4.
Apoptosis ; 21(12): 1447-1452, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27738771

RESUMO

Portimine is a recently discovered member of a class of marine micro-algal toxins called cyclic imines. In dramatic contrast to related compounds in this toxin class, portimine has very low acute toxicity to mice but is highly cytotoxic to cultured cells. In this study we show that portimine kills human Jurkat T-lymphoma cells and mouse embryonic fibroblasts (MEFs), with LC50 values of 6 and 2.5 nM respectively. Treated cells displayed rapid caspase activation and phosphatidylserine exposure, indicative of apoptotic cell death. Jurkat cells overexpressing the anti-apoptotic protein Bcl-2 or Bax/Bak knockout MEFs were completely protected from portimine. This protection was apparent even at high concentrations of portimine, with no evidence of necrotic cell death, indicating that portimine is a selective chemical inducer of apoptosis. Treatment of the Bcl-2-overexpressing cells with both portimine and the Bcl-2 inhibitor ABT-737 proved a powerful combination, causing >90 % death. We conclude that portimine is one of the most potent naturally derived inducers of apoptosis to be discovered, and it displays strong selectivity for the induction of apoptotic pathways.


Assuntos
Apoptose/efeitos dos fármacos , Citotoxinas/toxicidade , Iminas/toxicidade , Toxinas Marinhas/toxicidade , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Citotoxinas/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Iminas/química , Células Jurkat , Toxinas Marinhas/química , Camundongos , Estrutura Molecular
5.
J Neurochem ; 135(3): 479-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26173951

RESUMO

Pinnatoxins are members of the cyclic imine group of marine phycotoxins that are highly toxic in in vivo rodent bioassays, causing rapid death due to respiratory depression. Recent studies have shown that pinnatoxins E, F and G, found in New Zealand and Australian shellfish, act as antagonists at muscle-type nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction. In the present study, binding affinities and modes of these pinnatoxin isomers at neuronal and muscle nAChRs were assessed using radioligand binding, electrophysiological and molecular modelling techniques. Radioligand-binding studies revealed that all three pinnatoxins bound with high affinity to muscle-type nAChRs, as well as to the α7 and α4ß2 neuronal receptors, with an order of affinity of muscle type > α7 > α4ß2. The rank order of potency at all receptors was pinnatoxin F > G > E. Pinnatoxins F and G also antagonized ACh-evoked responses in α7 and α4ß2 neuronal receptors expressed in Xenopus oocytes. Molecular modelling revealed that pinnatoxins E, F and G make multiple hydrogen bond interactions with the binding site of muscle-type and α7 receptors, with few interactions at the α4ß2 binding site, reflecting the binding affinity and functional data. This study shows for the first time that pinnatoxins E, F and G bind to, and functionally antagonize neuronal nAChRs, with interactions potentially playing a role in pinnatoxin toxicity.


Assuntos
Alcaloides/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Receptores Nicotínicos/metabolismo , Compostos de Espiro/metabolismo , Alcaloides/administração & dosagem , Animais , Diafragma/efeitos dos fármacos , Diafragma/metabolismo , Relação Dose-Resposta a Droga , Feminino , Ligação Proteica/fisiologia , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Compostos de Espiro/administração & dosagem , Xenopus
6.
J AOAC Int ; 98(3): 609-621, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26024657

RESUMO

A single-laboratory validation study was conducted for the hydrophilic interaction-LC-MS/MS analysis of paralytic shellfish toxins (PSTs) in bivalve shellfish. The method was developed as an alternative to the precolumn oxidation AOAC 2005.06 and postcolumn oxidation AOAC 2011.02 LC with fluorescence detection methods, receptor binding assay AOAC 2011.27, as well as the mouse bioassay AOAC 959.08. PSTs assessed were saxitoxin, neosaxitoxin, deoxydecarbamoylsaxitoxin, decarbamoylsaxitoxin, decarbamoylneosaxitoxin, gonyautoxins 1-6, decarbamoylgonyautoxins 2-3, and N-sulfocarbamoyl gonyautoxins 2&3. The method also included the determination of decarbamoylgonyautoxins 1&4, N-sulfocarbamoyl gonyautoxins 1&4, and M toxins. Twelve commercially produced bivalve species from both New Zealand and the United Kingdom were assessed, including mussels, oysters, scallops, and clams. Validation studies demonstrated acceptable method performance characteristics for specificity, linearity, recovery, repeatability, and within-laboratory reproducibility. LOD and LOQ were significantly improved in comparison to current fluorescence-based detection methods, and the method was shown to be rugged. The method performed well in comparison to AOAC 2005.06, with evidence obtained from both comparative analysis of 1141 PST-contaminated samples and successful participation in proficiency testing schemes. The method is suitable for use in regulatory testing and will be submitted for an AOAC collaborative study.


Assuntos
Bivalves/química , Toxinas Marinhas/análise , Intoxicação por Frutos do Mar , Frutos do Mar/análise , Animais , Cromatografia Líquida de Alta Pressão , Resíduos de Drogas/análise , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
7.
J AOAC Int ; 95(4): 1097-105, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970578

RESUMO

A single-laboratory validation is reported for an LC/MS/MS quantification of six brevetoxins in four matrixes (Greenshell mussel, eastern oyster, hard clam, and Pacific oyster). Recovery and precision data were collected from seven analytical batches using shellfish flesh at 0.05 mg/kg. Method recoveries and within-laboratory reproducibility ranged from 73 to 112%, with an RSD between 14 and 18% for brevetoxin-3, brevetoxin B5, brevetoxin B2, and S-desoxy brevetoxin B2. The recovery and within-laboratory reproducibility for brevetoxin-2 was 61%, with an RSD of 27%. Brevetoxin B1 gave an RSD of 12%, but no reference material was available and this toxin was only recorded in a hard clam sample naturally contaminated with brevetoxins. One naturally contaminated sample of each shellfish matrix, with brevetoxin levels ranging from 0.012 to 9.9 mg/kg, was tested in multiple batches, and the RSDs were similar to those for fortified samples at 0.05 mg/kg. Comparisons with limited data for the neurotoxic shellfish poisoning mouse bioassay for four naturally contaminated shellfish samples showed that the regulatory action limit of 0.8 mg/kg is conservative with respect to the bioassay regulatory limit of 20 mouse units/100 g.


Assuntos
Bioensaio/métodos , Cromatografia Líquida/métodos , Análise de Alimentos/métodos , Toxinas Marinhas/análise , Oxocinas/análise , Espectrometria de Massas em Tandem/métodos , Animais , Bivalves , Contaminação de Alimentos , Laboratórios , Camundongos , Ostreidae , Valores de Referência , Reprodutibilidade dos Testes , Frutos do Mar , Intoxicação por Frutos do Mar/prevenção & controle , Toxinas Biológicas/análise
8.
Toxicon ; 204: 56-63, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34742781

RESUMO

Saxitoxin and its derivatives, the paralytic shellfish toxins (PSTs), are well known to be toxic to humans, and maximum permitted levels in seafood have been established by regulatory authorities in many countries. Monitoring of PSTs is typically performed using chemical methods which quantify the concentration of the individual PST analogues, of which there are many. However, since the toxicities of analogues are different, they do not equally contribute to the overall toxicity of the sample. To account for these differences, toxicity equivalency factors (TEFs) need to be determined for each analogue and applied. Currently there are no established TEFs for decarbamoyl gonyautoxin 1&4 (dcGTX1&4), which occurs in some clam species such as Mactra chinensis contaminated with PSTs due to metabolism within the shellfish. In this study the median lethal dose of purified, equilibrated epimeric mixture of dcGTX1&4 has been determined by intraperitoneal injection (i.p.) (4.75 µmol/kg) and by feeding (34.9 µmol/kg). The most relevant route of exposure is orally with feeding being more representative of human consumption and more reliable than gavage. Based on the median lethal dose by feeding, a TEF of 0.1 is recommended for dcGTX1&4. Receptor binding activity and i.p. toxicity results showed dcGTX1&4 to be much less toxic than STX (140-170-fold). However, by feeding a much smaller difference in toxicity was observed with dcGTX1&4 being only 11-fold less toxic than STX. Analysis of the gut contents of mice dosed with dcGTX1&4 showed the presence of decarbamoyl gonyautoxin 2&3, decarbamoyl saxitoxin and decarbamoyl neosaxitoxin, all of which are of greater toxicity. This conversion of dcGTX1&4 within the digestive track to more toxic congeners may explain the high relative toxicity of dcGTX1&4 by feeding compared to that determined by i.p. and by sodium channel activity.


Assuntos
Bivalves , Intoxicação por Frutos do Mar , Animais , Camundongos , Saxitoxina/análogos & derivados , Saxitoxina/toxicidade , Frutos do Mar/análise
9.
Chemosphere ; 263: 127937, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32828056

RESUMO

The cyanobacterium Microcoleus autumnalis grows as thick benthic mats in rivers and is becoming increasingly prevalent around the world. M. autumnalis can produce high concentrations of anatoxins and ingestion of benthic mats has led to multiple dog deaths over the past two decades. M. autumnalis produces a suite of different anatoxin congeners including anatoxin-a (ATX), dihydroanatoxin-a, (dhATX), homoanatoxin-a and dihydrohomoanatoxin-a. Benthic mat samples often contain high levels of dhATX, but there is little toxicology information on this congener. In the present study, natural versions of dhATX and ATX were purified from cyanobacteria to determine the acute toxicity by different routes of administration using mice. Nuclear magnetic resonance spectroscopy was used to confirm the putative structure of dhATX. By intraperitoneal (ip) injection, the median lethal dose (LD50) for dhATX was 0.73 mg/kg, indicating a reduced toxicity compared to ATX (LD50 of 0.23 mg/kg). However, by oral administration (both gavage and feeding), dhATX was more toxic than ATX (gavage LD50 of 2.5 mg/kg for dhATX and 10.6 mg/kg for ATX; feeding LD50 of 8 mg/kg for dhATX and 25 mg/kg for ATX). The relative nicotinic acetylcholine receptor-binding affinities of ATX and dhATX were determined using the Torpedo electroplaque assay which showed consistency with the relative toxicity determined by ip injection. This work highlights that toxicity studies based solely on ip injection may not yield LD50 values that are relevant to those derived via oral administration, and hence, do not provide a good estimate of the risk posed to human and animal health in situations where oral ingestion is the likely route of exposure. The high acute oral toxicity of dhATX, and its abundance in M. autumnalis proliferations, demonstrates that it is an important environmental contaminant that warrants further investigation.


Assuntos
Cianobactérias/metabolismo , Prolina/análogos & derivados , Tropanos/toxicidade , Animais , Toxinas Bacterianas/toxicidade , Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade , Cianobactérias/química , Toxinas de Cianobactérias , Cães , Humanos , Camundongos , Prolina/toxicidade , Rios/química
10.
Appl Environ Microbiol ; 74(23): 7243-51, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18849457

RESUMO

The microcystin (MC) content and cyanobacterial community structure of Antarctic microbial mat samples collected from 40 ponds, lakes, and hydroterrestrial environments were investigated. Samples were collected from Bratina Island and four of the Dry Valleys, Wright, Victoria, Miers, and Marshall. Enzyme-linked immunosorbent assays (ELISAs), liquid chromatography-mass spectrometry (LC-MS), and protein phosphatase 2A (PP-2A) inhibition assays resulted in the identification of low levels (1 to 16 mg/kg [dry weight]) of MCs in all samples. A plot of indicative potencies of MCs (PP-2A inhibition assay/ELISA ratio) versus total MCs (ELISA) showed a general decrease in potency, as total MC levels increased, and a clustering of values from discrete geographic locations. LC-tandem MS analysis on selected samples identified eight novel MC congeners. The low-energy collisional activation spectra were consistent with variants of [D-Asp(3)] MC-RR and [D-Asp(3)] MC-LR containing glycine [Gly(1)] rather than alanine and combinations of homoarginine [hAr(2)] or acetyldemethyl 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid (acetyldemethyl ADDA) [ADMAdda(5)] substitutions. Nostoc sp. was identified as a MC producer using PCR amplification of a region of the 16S rRNA gene and the aminotransferase domain of the mcyE gene. Automated ribosomal intergenic spacer analysis (ARISA) was undertaken to enable a comparison of cyanobacterial mat community structure from distant geographical locations. Two-dimensional multidimensional scaling ordination analysis of the ARISA data showed that in general, samples from the same geographic location tended to cluster together. ARISA also enabled the putative identification of the MC-producing Nostoc sp. from multiple samples.


Assuntos
Cianobactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microcistinas/isolamento & purificação , Regiões Antárticas , Cromatografia Líquida , Análise por Conglomerados , Cianobactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Ensaio de Imunoadsorção Enzimática , Genes de RNAr , Microcistinas/química , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Espectrometria de Massas em Tandem
11.
Toxicon ; 52(8): 927-35, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18938193

RESUMO

Lipophilic phycotoxins in size-fractionated plankton net tows (20 mum mesh-size) were measured on-board during a month-long oceanographic cruise in North Sea coastal waters. Tandem mass spectrometry coupled to liquid chromatography (LC-MS/MS) was employed for the detection and quantification of a broad spectrum of known and putative phycotoxins. For pectenotoxins (PTXs) the following ion masses ([M + NH(4)](+)) were monitored: m/z 876 for PTX-2, m/z 892 for PTX-11 and PTX-13, and m/z 874 for PTX-12 and PTX-14. The PTX levels in net plankton were highest along the Danish north coast, but levels over 50 ng per net tow were also detected on the southern Scottish East coast and in the northern Skagerrak. Abundance of PTXs was highly correlated with the occurrence of the marine dinoflagellate Dinophysis spp. Whereas in the eastern North Sea PTX-2 was the most abundant PTX, in the western North Sea PTX-1 was the major component, but it was also present in lower proportions in the Norwegian and Danish waters than in the western North Sea. Isobaric PTX-11 was absent or only detected at trace levels throughout the entire cruise, and PTX-13 and PTX-14 were not detected at all. The identity of PTX-1 was confirmed by comparison of retention time and mass spectrum of the North Sea phytoplankton sample to PTX-1 previously isolated from shellfish. Statistical analysis showed the best correlation between the occurrence of PTX-1 and Dinophysis acuminata cell concentration. Nevertheless, we could not rule out the possibility of metabolic transformations of PTXs by organisms that have grazed upon Dinophysis. Such biotransformations could conceivably occur in heterotrophic dinoflagellates or ciliates, or even via oxidation in copepod fecal pellets. In any case, this study confirmed the presence of PTX-1 in the plankton and is the first definitive report of this toxin in the North Sea.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/análise , Plâncton/química , Piranos/análise , Animais , Cromatografia Líquida , Macrolídeos , Toxinas Marinhas/química , Toxinas Marinhas/isolamento & purificação , Mar do Norte , Piranos/química , Piranos/isolamento & purificação , Espectrometria de Massas em Tandem
12.
Toxicon ; 52(8): 954-6, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18977379

RESUMO

Seafood in many parts of the world may become contaminated with high levels of domoic acid and domoic acid isomers, and such seafood has been shown to cause toxic effects in humans and in marine animals. Domoic acid itself has been held responsible for the observed effects, although the possible contribution of the isomers to toxicity has not been investigated. In the present study, the acute intraperitoneal toxicity of isodomoic acid C in mice was found to be lower than that of domoic acid. Furthermore, the severities of the behavioural changes induced by isodomoic acids A, B and C were all much lower than that of domoic acid itself, suggesting that these substances pose relatively little risk to human or animal health.


Assuntos
Ácidos Heptanoicos/toxicidade , Ácido Caínico/análogos & derivados , Toxinas Marinhas/toxicidade , Animais , Comportamento/efeitos dos fármacos , Feminino , Ácidos Heptanoicos/isolamento & purificação , Injeções Intraperitoneais , Isomerismo , Ácido Caínico/toxicidade , Dose Letal Mediana , Toxinas Marinhas/isolamento & purificação , Camundongos , Modelos Moleculares , Mytilus edulis/metabolismo , Pectinidae/química , Alga Marinha/química
13.
Harmful Algae ; 80: 80-87, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30502815

RESUMO

Ciguatera fish poisoning is a serious human health issue that is highly localized to tropical and sub-tropical coastal areas, affecting many of the indigenous island communities intrinsically linked to reef systems for sustenance and trade. It is caused by the consumption of reef fish contaminated with ciguatoxins and is reported as the most common cause of non-bacterial food poisoning. The causative toxins bioaccumulate up the food web, from small herbivorous fish that graze on microalgae of the genus Gambierdiscus into the higher trophic level omnivorous and carnivorous fish predating on them. The number of Gambierdiscus species being described is increasing rapidly and the role of other toxins produced by this microalgal genus in ciguatera intoxications, such as maitotoxin, remains unclear. Ciguatoxins and maitotoxin are among the most potent marine toxins known and there are currently no methods of analysis that can simultaneously monitor these toxins with a high degree of specificity. To meet this need a rapid and selective ultra-performance liquid chromatography tandem mass spectrometry method has been developed to rapidly screen Gambierdiscus cultures and environmental sample device extracts for ciguatoxins and maitotoxins. A fast sample preparation method has also been developed to allow sensitive quantification of the potent ciguatoxin fish metabolite P-CTX-1B from fish extracts, and this method has been subjected to a small validation study. Novel aspects of this approach include the use of alkaline mobile phase for chromatographic separation and specific monitoring of the various toxins. This method has good potential to help evaluate ciguatera risk associated with Gambierdiscus and related microalgal species, and to help promote method development activities for this important and analytically challenging toxin class.


Assuntos
Ciguatoxinas/análise , Monitoramento Ambiental/métodos , Peixes/metabolismo , Toxinas Marinhas/análise , Oxocinas/análise , Animais , Cromatografia Líquida , Ciguatoxinas/metabolismo , Espectrometria de Massas em Tandem
14.
Toxicon ; 148: 132-142, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29705145

RESUMO

Aphanizomenon gracile is one of the most widespread Paralytic Shellfish Toxin (PST) producing cyanobacteria in freshwater bodies in the Northern Hemisphere. It has been shown to produce various PST congeners, including saxitoxin (STX), neosaxitoxin (NEO), decarbamoylsaxitoxin (dcSTX) and gonyautoxin 5 (GTX5) in Europe, North America and Asia. Three cyanobacteria strains were isolated in Lake Iznik in northwestern Turkey. Morphological characterization of these strains suggested all three strains conformed to classical taxonomic identification of A. gracile with some differences such as clumping of filaments, partially hyaline cells in some filaments and longer than usual vegetative cells. Sequences of 16S rRNA gene of these strains were placed within an A. gracile cluster including the majority of PST producing strains, confirming the identification of these strains as A. gracile. These new strains possessed saxitoxin biosynthesis genes sxtA, sxtG and their sequences clustered with those of other A. gracile. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis demonstrated the presence of NEO, STX, dcSTX and decarbamoylneosaxitoxin (dcNEO) in all strains. This is the first report of a PST producer in any water body in Turkey and first observation of dcNEO in an A. gracile culture.


Assuntos
Aphanizomenon/genética , Saxitoxina/análogos & derivados , Saxitoxina/genética , Aphanizomenon/química , Aphanizomenon/classificação , Genes Bacterianos , Lagos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Saxitoxina/biossíntese , Análise de Sequência de DNA , Turquia
15.
Toxicon ; 50(2): 292-301, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17517427

RESUMO

In November 2005, at least five dogs died rapidly after contact with water from the Hutt River (lower North Island, New Zealand). Necropsy performed 24h later on one of the dogs (a 20-month-old Labrador) revealed few findings of interest, except for copious amounts of froth in the respiratory tract down to the bifurcation of the trachea and large quantities of algal material in the dog's stomach. Low and relatively stable flows in the Hutt River during spring had resulted in the proliferation of benthic cyanobacteria that formed large black/brown mats along the river edge. Samples from the Labrador's stomach contents and cyanobacterial mats were analysed microscopically and screened using chemical and biochemical assays for cyanotoxins: anatoxin-a, homoanatoxin-a, cylindrospermopsins, saxitoxins and microcystins. Liquid chromatography-mass spectrometry (LC-MS) confirmed the presence of the neurotoxic cyanotoxins anatoxin-a and homoanatoxin-a and their degradation products, dihydro-anatoxin-a and dihydro-homoanatoxin-a. This is the first report of homoanatoxin-a and associated degradation product in New Zealand. Based on morphology, the causative species was identified as Phormidium sp. Subsequent phylogenetic analysis of 16S rRNA gene sequences demonstrated that the causative organism was most similar to Phormidium autumnale. Further investigations led to the detection of homoanatoxin-a and anatoxin-a in cyanobacterial mats from four other rivers in the Wellington region (lower North Island, New Zealand). Access restrictions were placed on over 60% of river catchments in the western Wellington region, severely affecting recreational users.


Assuntos
Toxinas Bacterianas/intoxicação , Doenças do Cão/induzido quimicamente , Toxinas Marinhas/intoxicação , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/veterinária , Animais , Compostos Bicíclicos Heterocíclicos com Pontes , Clonagem Molecular , Cianobactérias/química , Cianobactérias/ultraestrutura , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/efeitos dos fármacos , Cães , Conteúdo Gastrointestinal/química , Microcistinas/química , Microcistinas/isolamento & purificação , Microcistinas/toxicidade , Nova Zelândia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saxitoxina/química , Saxitoxina/isolamento & purificação , Saxitoxina/toxicidade , Fixação de Tecidos , Toxoides/química , Toxoides/isolamento & purificação
16.
Toxins (Basel) ; 9(2)2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28230783

RESUMO

Paralytic shellfish poisoning results from consumption of seafood naturally contaminated by saxitoxin and its congeners, the paralytic shellfish toxins (PSTs). The levels of such toxins are regulated internationally, and maximum permitted concentrations in seafood have been established in many countries. A mouse bioassay is an approved method for estimating the levels of PSTs in seafood, but this is now being superseded in many countries by instrumental methods of analysis. Such analyses provide data on the levels of many PSTs in seafood, but for risk assessment, knowledge of the relative toxicities of the congeners is required. These are expressed as "Toxicity Equivalence Factors" (TEFs). At present, TEFs are largely based on relative specific activities following intraperitoneal injection in a mouse bioassay rather than on acute toxicity determinations. A more relevant parameter for comparison would be median lethal doses via oral administration, since this is the route through which humans are exposed to PSTs. In the present study, the median lethal doses of gonyautoxin 5, gonyautoxin 6, decarbamoyl neosaxitoxin and of equilibrium mixtures of decarbamoyl gonyautoxins 2&3, C1&2 and C3&4 by oral administration to mice have been determined and compared with toxicities via intraperitoneal injection. The results indicate that the TEFs of several of these substances require revision in order to more accurately reflect the risk these toxins present to human health.


Assuntos
Saxitoxina/análogos & derivados , Administração Oral , Animais , Feminino , Injeções Intraperitoneais , Dose Letal Mediana , Camundongos , Nível de Efeito Adverso não Observado , Saxitoxina/administração & dosagem , Saxitoxina/toxicidade
17.
Toxicon ; 47(2): 229-40, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16375937

RESUMO

Preparative HPLC purification of a side-fraction obtained during purification of 44,55-dihydroxyyessotoxin (6) afforded fractions containing previously unidentified yessotoxin analogues. Careful analysis of these fractions by HPLC-UV, LC-MS3, and NMR spectroscopy, revealed the identities of some of these analogues as 45-hydroxy-46,47-dinoryessotoxin (1), 44-oxo-45,46,47-trinoryessotoxin (2) and 9-methyl-42,43,44,45,46,47,55-heptanor-38-en-41-oxoyessotoxin (5). Numerous other analogues were present but could only be characterized by HPLC-UV and LC-MS3 due to their low abundance. The HPLC-UV and LC-MS3 data confirm the presence of large numbers of yessotoxin analogues, some of which may be oxidative degradation products, in extracts of Protoceratium reticulatum. Compound-1 is the first 46,47-dinoryessotoxin to be identified.


Assuntos
Dinoflagellida/química , Éteres Cíclicos/química , Éteres Cíclicos/isolamento & purificação , Oxocinas/química , Oxocinas/isolamento & purificação , Animais , Estrutura Molecular , Venenos de Moluscos
18.
Toxicon ; 47(5): 510-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16530240

RESUMO

Yessotoxin 32-O-[beta-L-arabinofuranosyl-(5'-->1'')-beta-L-arabinofuranoside] (3) was isolated from extracts of Protoceratium reticulatum during a large scale isolation of yessotoxin (1). The structure was characterized by mass spectrometry and NMR spectroscopy. Di-glycoside-3, along with the corresponding mono-glycoside (2) were detected in cultures of P. reticulatum originating from Europe and New Zealand, suggesting that production of arabinosides of 1 is a normal feature of this alga. Formation of multiply charged anions and fragmentation of 3 occurred much more readily than for 1 and 2 under the LC-MS conditions used in this study.


Assuntos
Venenos de Moluscos/química , Venenos de Moluscos/isolamento & purificação , Oxocinas/isolamento & purificação , Animais , Modelos Moleculares , Estrutura Molecular , Oxocinas/química
19.
Toxicon ; 48(2): 152-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16828828

RESUMO

Two novel pectenotoxins (PTXs), PTX-13 and -14, were isolated from extracts of Dinophysis acuta collected from the west coast of South Island, New Zealand. The compounds were identified as oxidized analogues of PTX-2 by NMR spectroscopic and LC-MS studies. PTX-13 (32R-hydroxyPTX-2) corresponds to the unidentified analogue PTX-11x reported by [Suzuki et al., 2003. Liquid chromatography-mass spectrometry of spiroketal stereoisomers of pectenotoxins and the analysis of novel pectenotoxin isomers in the toxic dinoflagellate Dinophysis acuta from New Zealand. J. Chromatogr. A 992, 141-150]. PTX-13 underwent slow deuteration at the 13beta-position during NMR analysis. PTX-14 corresponds to the 32,36-dehydration product of PTX-13, and may be an artifact.


Assuntos
Dinoflagellida/química , Furanos/isolamento & purificação , Toxinas Marinhas/isolamento & purificação , Piranos/isolamento & purificação , Animais , Cromatografia Líquida de Alta Pressão , Dinoflagellida/metabolismo , Furanos/química , Macrolídeos , Toxinas Marinhas/química , Estrutura Molecular , Piranos/química , Espectrometria de Massas por Ionização por Electrospray
20.
PeerJ ; 4: e1739, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26966668

RESUMO

In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL(-1) in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL(-1) to high µg mL(-1) range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA