Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Psychiatry ; 25(4): 831-843, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30635639

RESUMO

Genome-wide association studies (GWAS) have identified many genomic loci associated with risk for schizophrenia, but unambiguous identification of the relationship between disease-associated variants and specific genes, and in particular their effect on risk conferring transcripts, has proven difficult. To better understand the specific molecular mechanism(s) at the schizophrenia locus in 11q25, we undertook cis expression quantitative trait loci (cis-eQTL) mapping for this 2 megabase genomic region using postmortem human brain samples. To comprehensively assess the effects of genetic risk upon local expression, we evaluated multiple transcript features: genes, exons, and exon-exon junctions in multiple brain regions-dorsolateral prefrontal cortex (DLPFC), hippocampus, and caudate. Genetic risk variants strongly associated with expression of SNX19 transcript features that tag multiple rare classes of SNX19 transcripts, whereas they only weakly affected expression of an exon-exon junction that tags the majority of abundant transcripts. The most prominent class of SNX19 risk-associated transcripts is predicted to be overexpressed, defined by an exon-exon splice junction between exons 8 and 10 (junc8.10) and that is predicted to encode proteins that lack the characteristic nexin C terminal domain. Risk alleles were also associated with either increased or decreased expression of multiple additional classes of transcripts. With RACE, molecular cloning, and long read sequencing, we found a number of novel SNX19 transcripts that further define the set of potential etiological transcripts. We explored epigenetic regulation of SNX19 expression and found that DNA methylation at CpG sites near the primary transcription start site and within exon 2 partially mediate the effects of risk variants on risk-associated expression. ATAC sequencing revealed that some of the most strongly risk-associated SNPs are located within a region of open chromatin, suggesting a nearby regulatory element is involved. These findings indicate a potentially complex molecular etiology, in which risk alleles for schizophrenia generate epigenetic alterations and dysregulation of multiple classes of SNX19 transcripts.


Assuntos
Esquizofrenia/genética , Nexinas de Classificação/genética , Adulto , Alelos , Autopsia , Encéfalo/metabolismo , Cromatina/metabolismo , Mapeamento Cromossômico/métodos , Metilação de DNA , Éxons/genética , Feminino , Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Fatores de Risco , Nexinas de Classificação/metabolismo
2.
Mol Psychiatry ; 25(12): 3267-3277, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131587

RESUMO

Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)-these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Adulto , Encéfalo , Feminino , Humanos , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Análise de Sequência de RNA , Fumar/efeitos adversos , Fumar/genética , Transcriptoma/genética
3.
Acta Neuropathol ; 137(4): 557-569, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30712078

RESUMO

Late-onset Alzheimer's disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD, we surveyed 420,852 DNA methylation (DNAm) sites from neurotypical controls (N = 49) and late-onset AD patients (N = 24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum). We identified 858 sites with robust differential methylation collectively annotated to 772 possible genes (FDR < 5%, within 10 kb). These sites were overrepresented in AD genetic risk loci (p = 0.00655) and were enriched for changes during normal aging (p < 2.2 × 10-16), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR < 5%). To functionally validate these associations, we generated and analyzed corresponding transcriptome data to prioritize 130 genes within 10 kb of the differentially methylated sites. These 130 genes were differentially expressed between AD cases and controls and their expression was associated with nearby DNAm (p < 0.05). This integrated analysis implicates novel genes in Alzheimer's disease, such as ANKRD30B. These results highlight DNAm differences in Alzheimer's disease that have gene expression correlates, further implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Metilação de DNA , Perfilação da Expressão Gênica , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Ilhas de CpG/genética , Bases de Dados Genéticas , Epigenômica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Nat Commun ; 12(1): 5251, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475392

RESUMO

DNA methylation (DNAm) is an epigenetic regulator of gene expression and a hallmark of gene-environment interaction. Using whole-genome bisulfite sequencing, we have surveyed DNAm in 344 samples of human postmortem brain tissue from neurotypical subjects and individuals with schizophrenia. We identify genetic influence on local methylation levels throughout the genome, both at CpG sites and CpH sites, with 86% of SNPs and 55% of CpGs being part of methylation quantitative trait loci (meQTLs). These associations can further be clustered into regions that are differentially methylated by a given SNP, highlighting the genes and regions with which these loci are epigenetically associated. These findings can be used to better characterize schizophrenia GWAS-identified variants as epigenetic risk variants. Regions differentially methylated by schizophrenia risk-SNPs explain much of the heritability associated with risk loci, despite covering only a fraction of the genomic space. We provide a comprehensive, single base resolution view of association between genetic variation and genomic methylation, and implicate schizophrenia GWAS-associated variants as influencing the epigenetic plasticity of the brain.


Assuntos
Metilação de DNA , Genoma Humano , Locos de Características Quantitativas/genética , Esquizofrenia/genética , Fatores Etários , Encéfalo/metabolismo , Encéfalo/patologia , Ilhas de CpG/genética , Epigênese Genética , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
5.
Neuropsychopharmacology ; 46(3): 554-560, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32731254

RESUMO

Numerous DNA methylation (DNAm) biomarkers of cigarette smoking have been identified in peripheral blood studies, but because of tissue specificity, blood-based studies may not detect brain-specific smoking-related DNAm differences that may provide greater insight as neurobiological indicators of smoking and its exposure effects. We report the first epigenome-wide association study (EWAS) of smoking in human postmortem brain, focusing on nucleus accumbens (NAc) as a key brain region in developing and reinforcing addiction. Illumina HumanMethylation EPIC array data from 221 decedents (120 European American [23% current smokers], 101 African American [26% current smokers]) were analyzed. DNAm by smoking (current vs. nonsmoking) was tested within each ancestry group using robust linear regression models adjusted for age, sex, cell-type proportion, DNAm-derived negative control principal components (PCs), and genotype-derived PCs. The resulting ancestry-specific results were combined via meta-analysis. We extended our NAc findings, using published smoking EWAS results in blood, to identify DNAm smoking effects that are unique (tissue-specific) vs. shared between tissues (tissue-shared). We identified seven CpGs (false discovery rate < 0.05), of which three CpGs are located near genes previously indicated with blood-based smoking DNAm biomarkers: ZIC1, ZCCHC24, and PRKDC. The other four CpGs are novel for smoking-related DNAm changes: ABLIM3, APCDD1L, MTMR6, and CTCF. None of the seven smoking-related CpGs in NAc are driven by genetic variants that share association signals with predisposing genetic risk variants for smoking, suggesting that the DNAm changes reflect consequences of smoking. Our results provide the first evidence for smoking-related DNAm changes in human NAc, highlighting CpGs that were undetected as peripheral biomarkers and may reflect brain-specific responses to smoking exposure.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Humanos , não Fumantes , Núcleo Accumbens , Fumantes , Fumar/genética
6.
Nat Commun ; 11(1): 462, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974374

RESUMO

Human induced pluripotent stem cells (hiPSCs) are a powerful model of neural differentiation and maturation. We present a hiPSC transcriptomics resource on corticogenesis from 5 iPSC donor and 13 subclonal lines across 9 time points over 5 broad conditions: self-renewal, early neuronal differentiation, neural precursor cells (NPCs), assembled rosettes, and differentiated neuronal cells. We identify widespread changes in the expression of both individual features and global patterns of transcription. We next demonstrate that co-culturing human NPCs with rodent astrocytes results in mutually synergistic maturation, and that cell type-specific expression data can be extracted using only sequencing read alignments without cell sorting. We lastly adapt a previously generated RNA deconvolution approach to single-cell expression data to estimate the relative neuronal maturity of iPSC-derived neuronal cultures and human brain tissue. Using many public datasets, we demonstrate neuronal cultures are maturationally heterogeneous but contain subsets of neurons more mature than previously observed.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Transcriptoma , Algoritmos , Animais , Astrócitos/citologia , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Bases de Dados Genéticas , Regulação da Expressão Gênica , Humanos , Modelos Neurológicos , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/fisiologia , Ratos
7.
Neuron ; 103(2): 203-216.e8, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31174959

RESUMO

The hippocampus formation, although prominently implicated in schizophrenia pathogenesis, has been overlooked in large-scale genomics efforts in the schizophrenic brain. We performed RNA-seq in hippocampi and dorsolateral prefrontal cortices (DLPFCs) from 551 individuals (286 with schizophrenia). We identified substantial regional differences in gene expression and found widespread developmental differences that were independent of cellular composition. We identified 48 and 245 differentially expressed genes (DEGs) associated with schizophrenia within the hippocampus and DLPFC, with little overlap between the brain regions. 124 of 163 (76.6%) of schizophrenia GWAS risk loci contained eQTLs in any region. Transcriptome-wide association studies in each region identified many novel schizophrenia risk features that were brain region-specific. Last, we identified potential molecular correlates of in vivo evidence of altered prefrontal-hippocampal functional coherence in schizophrenia. These results underscore the complexity and regional heterogeneity of the transcriptional correlates of schizophrenia and offer new insights into potentially causative biology.


Assuntos
Lobo Frontal , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo , Esquizofrenia/genética , Esquizofrenia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Lobo Frontal/embriologia , Lobo Frontal/crescimento & desenvolvimento , Lobo Frontal/metabolismo , Ontologia Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA