Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(18): 7636-7643, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106948

RESUMO

Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.

2.
Nano Lett ; 18(2): 934-940, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29337567

RESUMO

Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.

3.
Nano Lett ; 17(8): 4781-4786, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28691487

RESUMO

Monolayer MoS2, among many other transition metal dichalcogenides, holds great promise for future applications in nanoelectronics and optoelectronics due to its ultrathin nature, flexibility, sizable band gap, and unique spin-valley coupled physics. However, careful study of these properties at low temperature has been hindered by an inability to achieve low-temperature Ohmic contacts to monolayer MoS2, particularly at low carrier densities. In this work, we report a new contact scheme that utilizes cobalt (Co) with a monolayer of hexagonal boron nitride (h-BN) that has the following two functions: modifies the work function of Co and acts as a tunneling barrier. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kΩ.µm at a carrier density of 5.3 × 1012/cm2. This further allows us to observe Shubnikov-de Haas oscillations in monolayer MoS2 at much lower carrier densities compared to previous work.

4.
Nat Commun ; 14(1): 3889, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393324

RESUMO

Near-perfect light absorbers (NPLAs), with absorbance, [Formula: see text], of at least 99%, have a wide range of applications ranging from energy and sensing devices to stealth technologies and secure communications. Previous work on NPLAs has mainly relied upon plasmonic structures or patterned metasurfaces, which require complex nanolithography, limiting their practical applications, particularly for large-area platforms. Here, we use the exceptional band nesting effect in TMDs, combined with a Salisbury screen geometry, to demonstrate NPLAs using only two or three uniform atomic layers of transition metal dichalcogenides (TMDs). The key innovation in our design, verified using theoretical calculations, is to stack monolayer TMDs in such a way as to minimize their interlayer coupling, thus preserving their strong band nesting properties. We experimentally demonstrate two feasible routes to controlling the interlayer coupling: twisted TMD bi-layers and TMD/buffer layer/TMD tri-layer heterostructures. Using these approaches, we demonstrate room-temperature values of [Formula: see text]=95% at λ=2.8 eV with theoretically predicted values as high as 99%. Moreover, the chemical variety of TMDs allows us to design NPLAs covering the entire visible range, paving the way for efficient atomically-thin optoelectronics.


Assuntos
Comunicação , Elementos de Transição , Projetos de Pesquisa , Tecnologia
5.
ACS Appl Mater Interfaces ; 13(26): 31271-31278, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170658

RESUMO

Chemical vapor deposition (CVD)-grown flakes of high-quality monolayers of WS2 can be stabilized at elevated temperatures by encapsulation with several layer hexagonal boron nitride (h-BN), but to different degrees in the presence of ambient air, flowing N2, and flowing forming gas (95% N2, 5% H2). The best passivation of WS2 at elevated temperature occurs for h-BN-covered samples with flowing N2 (after heating to 873 K), as judged by optical microscopy and photoluminescence (PL) intensity after a heating/cooling cycle. Stability is worse for uncovered samples, but best with flowing forming gas. PL from trions, in addition to that from excitons, is seen for covered WS2 only for forming gas, during cooling below ∼323 K; the trion has an estimated binding energy of ∼28 meV. It might occur because of doping level changes caused by charge defect generation by H2 molecules diffusing between the h-BN and the SiO2/Si substrate. The decomposition of uncovered WS2 flakes in air suggests a dissociation and chemisorption energy barrier of O2 on the WS2 surface of ∼1.6 eV. Fitting the high-temperature PL intensities in air gives a binding energy of a free exciton of ∼229 meV.

6.
Adv Mater ; 32(43): e2003567, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32914498

RESUMO

2D semiconductors have shown great potential for application to electrically tunable optoelectronics. Despite the strong excitonic photoluminescence (PL) of monolayer transition metal dichalcogenides (TMDs), their efficient electroluminescence (EL) has not been achieved due to the low efficiency of charge injection and electron-hole recombination. Here, multioperation-mode light-emitting field-effect transistors (LEFETs) consisting of a monolayer WSe2 channel and graphene contacts coupled with two top gates for selective and balanced injection of charge carriers are demonstrated. Visibly observable EL is achieved with the high external quantum efficiency of ≈6% at room temperature due to efficient recombination of injected electrons and holes in a confined 2D channel. Further, electrical tunability of both the channel and contacts enables multioperation modes, such as antiambipolar, depletion,and unipolar regions, which can be utilized for polarity-tunable field-effect transistors and photodetectors. The work exhibits great potential for use in 2D semiconductor LEFETs for novel optoelectronics capable of high efficiency, multifunctions, and heterointegration.

7.
ACS Appl Mater Interfaces ; 11(45): 42512-42519, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31633333

RESUMO

Since the discovery of graphene, layered transition metal dichalcogenides (TMDs) have been considered promising materials for applications in various fields because of their fascinating structural features and physical properties. Doping in semiconducting TMDs is essential for their practical application. In this regard, two-dimensional (2D) Si materials have emerged as a key component of 2D electronic, optics, sensing, and spintronic devices because of their complementary metal-oxide-semiconductor (CMOS) compatibility, high-quality oxide formation, moderated bandgap, and well-established doping techniques. Here, we report the tuning of the electronic properties of Si nanosheets (NSs) using a plasma-doping technique. Using this doping process, we fabricated p-n homojunction diodes and transistors with Si NSs. The estimated high ON/OFF ratio of ∼106 and field-effect hole mobility of 329 cm2 V-1 s-1 suggest a high crystal quality of the Si NSs. We also demonstrate vertically stacked heterostructured p-n junction diodes with MoS2, which exhibit rectifying properties and excellent light response.

8.
Rev Sci Instrum ; 88(5): 054902, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571432

RESUMO

In this paper, the T-bridge method is extended to measure the thermal properties of two-dimensional nanomaterials. We present an analysis of the measureable positions, width, and thermal resistance of two-dimensional materials. For verification purposes, the thermal conductivity of a SiO2 nanoribbon was measured. To enhance the thermal contact between the nanoribbon and the heater in the setup, the nanoribbon was dipped into either isopropanol or water in order to promote a sticking force. Also, focused ion beam deposition was used to deposit the nanoribbon onto the contact. The thermal conductivities of all three cases were identical, showing that water dipping could be used to enhance the thermal contact. Due to the simple structure of this method and the analysis provided herein, the T-bridge method can be widely used for measuring the thermal conductivity of two-dimensional materials.

9.
Nanoscale Res Lett ; 10(1): 429, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26518028

RESUMO

The two-dimensional (2D) growth of cubic-structured (silicon) Si nanosheets (SiNSs) was investigated. Freestanding, single-crystalline SiNSs with a thickness of 5-20 nm were grown on various Si substrates under an atmospheric chemical vapor deposition process. Systematic investigation indicated that a diffusion-limited aggregation (DLA) environment that leads to dendritic growth in <110> directions at the initial stage is essential for 2D growth. The kinetic aspects under DLA environments that ascribe to the dendritic and 2D growth were discussed. Under the more dilute conditions made by addition of Ar to the flow of H2, the SiNSs grew epitaxially on the substrates with periodic arrangement at a specific angle depending on the orientation of the substrate. It reveals that SiNSs always grew two dimensionally with exposing (111) surfaces. That is thermodynamically favorable.

10.
Nanoscale Res Lett ; 10(1): 2501, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26055472

RESUMO

Single-crystal, Cu-doped In x Ga1 - x N nanowires were grown on GaN/Al2O3 substrates via a vapor-liquid-solid (VLS) mechanism using Ni/Au bi-catalysts. The typical diameter of the Cu:In x Ga1 - x N nanowires was 80 to 150 nm, with a typical length of hundreds of micrometers. The as-grown nanowires exhibited diamagnetism. After annealing, the nanowires exhibited ferromagnetism with saturation magnetic moments higher than 0.8 µB (1 µB × 10(-24) Am(2)) per Cu atom at room temperature by the measurements using a superconducting quantum interference device (SQUID) magnetometer. X-ray absorption and X-ray magnetic circular dichroism spectra at Cu L 2,3-edges indicated that the doped Cu had a local magnetic moment and that its electronic configuration was mainly 3d (9). It possessed a small trivalent component, and thus, the n-type behavior of electrical property is measured at room temperature.

11.
Nanoscale Res Lett ; 10: 190, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26034411

RESUMO

We grew silicon nanowires (SiNWs) by a vapor-liquid-solid (VLS) mechanism using metal catalysts of gold (Au), titanium (Ti), manganese (Mn), and iron (Fe) under a high flow rate of hydrogen (H2). This combination of catalyst types and high gas flow rate revealed the potential for growing various SiNWs, including kinked SiNWs (with Au), ultra-thin SiNWs having diameters about 5 nm (with Ti), rough-surfaced SiNWs (with Mn), and ribbon-shaped SiNWs tens of microns in width (with Fe). The high flow rate of gas affects the VLS mechanism differently for each combination; for example, it induces an unstable solid-liquid interfaces (with Au), active etching of the catalyst (with Ti), sidewall deposition by a vapor-solid (VS) mechanism, and an asymmetric precipitation of Si in the catalyst (with Fe). Our combinatorial approach may provide a new path for the structural modulation of SiNWs via the VLS mechanism. PACS: 80; 81; 82.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA