Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732240

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infection has rapidly spread through various routes. A genomic analysis of clinical MRSA samples revealed an unknown protein, Sav2152, predicted to be a haloacid dehalogenase (HAD)-like hydrolase, making it a potential candidate for a novel drug target. In this study, we determined the crystal structure of Sav2152, which consists of a C2-type cap domain and a core domain. The core domain contains four motifs involved in phosphatase activity that depend on the presence of Mg2+ ions. Specifically, residues D10, D12, and D233, which closely correspond to key residues in structurally homolog proteins, are responsible for binding to the metal ion and are known to play critical roles in phosphatase activity. Our findings indicate that the Mg2+ ion known to stabilize local regions surrounding it, however, paradoxically, destabilizes the local region. Through mutant screening, we identified D10 and D12 as crucial residues for metal binding and maintaining structural stability via various uncharacterized intra-protein interactions, respectively. Substituting D10 with Ala effectively prevents the interaction with Mg2+ ions. The mutation of D12 disrupts important structural associations mediated by D12, leading to a decrease in the stability of Sav2152 and an enhancement in binding affinity to Mg2+ ions. Additionally, our study revealed that D237 can replace D12 and retain phosphatase activity. In summary, our work uncovers the novel role of metal ions in HAD-like phosphatase activity.


Assuntos
Proteínas de Bactérias , Hidrolases , Magnésio , Monoéster Fosfórico Hidrolases , Magnésio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Modelos Moleculares , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/enzimologia , Cristalografia por Raios X , Ligação Proteica
2.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216379

RESUMO

Lung cancer is the leading cause of cancer-related deaths. Small cell lung cancer (SCLC) accounts for 15-25% of all lung cancers. It exhibits a rapid doubling time and a high degree of invasiveness. Additionally, overexpression of c-Kit occurs in 70% of SCLC patients. In this study, we evaluated an antibody-drug conjugate (ADC) that targets c-Kit, which is a potential therapeutic agent for SCLC. First, we generated and characterized 4C9, a fully human antibody that targets c-Kit and specifically binds to SCLC cells expressing c-Kit with a binding affinity of KD = 5.5 × 10-9 M. Then, we developed an ADC using DM1, a microtubule inhibitor, as a payload. 4C9-DM1 efficiently induced apoptosis in SCLC with an IC50 ranging from 158 pM to 4 nM. An in vivo assay using a xenograft mouse model revealed a tumor growth inhibition (TGI) rate of 45% (3 mg/kg) and 59% (5 mg/kg) for 4C9-DM1 alone. Combination treatment with 4C9-DM1 plus carboplatin/etoposide or lurbinectedin resulted in a TGI rate greater than 90% compared with the vehicle control. Taken together, these results indicate that 4C9-DM1 is a potential therapeutic agent for SCLC treatment.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Imunoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Carboplatina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Etoposídeo/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Maitansina/farmacologia , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-2/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Trastuzumab/farmacologia , Moduladores de Tubulina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293219

RESUMO

Ovarian cancer is the fifth leading cause of cancer, followed by front line is mostly platinum agents and PARP inhibitors, and very limited option in later lines. Therefore, there is a need for alternative therapeutic options. Nectin-2, which is overexpressed in ovarian cancer, is a known immune checkpoint that deregulates immune cell function. In this study, we generated a novel anti-nectin-2 antibody (chimeric 12G1, c12G1), and further characterized it using epitope mapping, enzyme-linked immunosorbent assay, surface plasmon resonance, fluorescence-activated cell sorting, and internalization assays. The c12G1 antibody specifically bound to the C2 domain of human nectin-2 with high affinity (KD = 2.90 × 10-10 M), but not to mouse nectin-2. We then generated an antibody-drug conjugate comprising the c12G1 antibody conjugated to DM1 and investigated its cytotoxic effects against cancer cells in vitro and in vivo. c12G1-DM1 induced cell cycle arrest at the mitotic phase in nectin-2-positive ovarian cancer cells, but not in nectin-2-negative cancer cells. c12G1-DM1 induced ~100-fold cytotoxicity in ovarian cancer cells, with an IC50 in the range of 0.1 nM~7.4 nM, compared to normal IgG-DM1. In addition, c12G1-DM1 showed ~91% tumor growth inhibition in mouse xenograft models transplanted with OV-90 cells. These results suggest that c12G1-DM1 could be used as a potential therapeutic agent against nectin-2-positive ovarian cancers.


Assuntos
Imunoconjugados , Maitansina , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Xenoenxertos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Platina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma Epitelial do Ovário/tratamento farmacológico , Neoplasias Ovarianas/patologia , Imunoglobulina G/farmacologia , Imunoglobulina G/uso terapêutico , Maitansina/uso terapêutico
4.
Bioorg Chem ; 113: 105022, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098397

RESUMO

In this study, polyhydroxyisoflavones that directly prevent the aggregation of both amyloid ß (Aß) and tau were expediently synthesized via divergent Pd(0)-catalyzed Suzuki-Miyaura coupling and then biologically evaluated. By preliminary structure-activity relationship studies using thioflavin T (ThT) assays, an ortho-catechol containing isoflavone scaffold was proven to be crucial for preventing both Aß aggregation and tau-mediated neurofibrillary tangle formation. Additional TEM experiment confirmed that ortho-catechol containing isoflavone 4d significantly prevented the aggregation of both Aß and tau. To investigate the mode of action (MOA) of 4d, which possesses an ortho-catechol moiety, 1H-15N HSQC NMR analysis was thoroughly performed and the result indicated that 4d could directly inhibit both the formation of Aß42 fibrils and the formation of tau-derived neurofibrils, probably through the catechol-mediated nucleation of tau. Finally, 4d was demonstrated to alleviate cognitive impairment and pathologies related to Alzheimer's disease in a 5XFAD transgenic mouse model.


Assuntos
Catecóis/química , Isoflavonas/química , Fármacos Neuroprotetores/química , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Desenho de Fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Proteínas tau/antagonistas & inibidores
5.
Proc Natl Acad Sci U S A ; 113(35): E5202-11, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27531959

RESUMO

For bacteria, cysteine thiol groups in proteins are commonly used as thiol-based switches for redox sensing to activate specific detoxification pathways and restore the redox balance. Among the known thiol-based regulatory systems, the MarR/DUF24 family regulators have been reported to sense and respond to reactive electrophilic species, including diamide, quinones, and aldehydes, with high specificity. Here, we report that the prototypical regulator YodB of the MarR/DUF24 family from Bacillus subtilis uses two distinct pathways to regulate transcription in response to two reactive electrophilic species (diamide or methyl-p-benzoquinone), as revealed by X-ray crystallography, NMR spectroscopy, and biochemical experiments. Diamide induces structural changes in the YodB dimer by promoting the formation of disulfide bonds, whereas methyl-p-benzoquinone allows the YodB dimer to be dissociated from DNA, with little effect on the YodB dimer. The results indicate that B. subtilis may discriminate toxic quinones, such as methyl-p-benzoquinone, from diamide to efficiently manage multiple oxidative signals. These results also provide evidence that different thiol-reactive compounds induce dissimilar conformational changes in the regulator to trigger the separate regulation of target DNA. This specific control of YodB is dependent upon the type of thiol-reactive compound present, is linked to its direct transcriptional activity, and is important for the survival of B. subtilis This study of B. subtilis YodB also provides a structural basis for the relationship that exists between the ligand-induced conformational changes adopted by the protein and its functional switch.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzoquinonas/química , Benzoquinonas/farmacologia , Cristalografia por Raios X , Diamida/química , Diamida/farmacologia , Oxirredução , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
6.
Nature ; 483(7387): 108-12, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286060

RESUMO

Inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca(2+) channels. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP(3)R gating is initiated by InsP(3) binding to the InsP(3)-binding core (IBC, residues 224-604 of InsP(3)R1) and it requires the suppressor domain (SD, residues 1-223 of InsP(3)R1). Here we present structures of the amino-terminal region (NT, residues 1-604) of rat InsP(3)R1 with (3.6 Å) and without (3.0 Å) InsP(3) bound. The arrangement of the three NT domains, SD, IBC-ß and IBC-α, identifies two discrete interfaces (α and ß) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP(3)R and of the ABC domains docked into RyR are remarkably similar. The importance of the α-interface for activation of InsP(3)R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations. Binding of InsP(3) causes partial closure of the clam-like IBC, disrupting the ß-interface and pulling the SD towards the IBC. This reorients an exposed SD loop ('hotspot' (HS) loop) that is essential for InsP(3)R activation. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP(3)R, and an InsP(3)R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP(3) and blocked by ryanodine. Activation mechanisms are conserved between InsP(3)R and RyR. Allosteric modulation of two similar domain interfaces within an N-terminal subunit reorients the first domain (SD or A domain), allowing it, through interactions of the second domain of an adjacent subunit (IBC-ß or B domain), to gate the pore.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Microscopia Crioeletrônica , Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Estrutura Terciária de Proteína , Coelhos , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
7.
Appl Microbiol Biotechnol ; 101(6): 2333-2342, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27915377

RESUMO

Esterases comprise a group of enzymes that catalyze the cleavage and synthesis of ester bonds. They are important in biotechnological applications owing to their enantioselectivity, regioselectivity, broad substrate specificity, and the fact that they do not require cofactors. In a previous study, we isolated the esterase Est25 from a metagenomic library. Est25 showed catalytic activity toward the (R,S)-ketoprofen ethyl ester but had low enantioselectivity toward the (S)-ketoprofen ethyl ester. Because (S)-ketoprofen has stronger anti-inflammatory effects and fewer side effects than (R)-ketoprofen, enantioselectivity of this esterase is important. In this study, we generated Est25 mutants with improved enantioselectivity toward the (S)-ketoprofen ethyl ester; improved enantioselectivity of mutants was established by analysis of their crystal structures. The enantioselectivity of mutants was influenced by substitution of Phe72 and Leu255. Substituting these residues changed the size of the binding pocket and the entrance hole that leads to the active site. The enantioselectivity of Est25 (E = 1.1 ± 0.0) was improved in the mutants F72G (E = 1.9 ± 0.2), L255W (E = 16.1 ± 1.1), and F72G/L255W (E = 60.1 ± 0.5). Finally, characterization of Est25 mutants was performed by determining the optimum reaction conditions, thermostability, effect of additives, and substrate specificity after substituting Phe72 and Leu255.


Assuntos
Proteínas de Bactérias/química , Esterases/química , Cetoprofeno/química , Metagenoma , Microbiologia do Solo , Anti-Inflamatórios não Esteroides , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/genética , Esterases/metabolismo , Ésteres , Expressão Gênica , Biblioteca Genômica , Cetoprofeno/metabolismo , Cinética , Consórcios Microbianos/genética , Modelos Moleculares , Mutação , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
8.
Biochem J ; 473(20): 3533-3543, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27444647

RESUMO

There are three subtypes of vertebrate inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), a Ca2+-release channel on the ER membrane - IP3R1, IP3R2, and IP3R3 - each of which has a distinctive role in disease development. To determine the subtype-specific IP3-binding mechanism, we compared the thermodynamics, thermal stability, and conformational dynamics between the N-terminal regions of IP3R1 (IP3R1-NT) and IP3R3 (IP3R3-NT) by performing circular dichroism (CD), isothermal titration calorimetry (ITC), and hydrogen-deuterium exchange mass spectrometry (HDX-MS). Previously determined crystal structures of IP3R1-NT and HDX-MS results from this study revealed that both IP3R1 and IP3R3 adopt a similar IP3-binding mechanism. However, several regions, including the α- and ß-interfaces, of IP3R1-NT and IP3R3-NT show significantly different conformational dynamics upon IP3 binding, which may explain the different IP3-binding affinities between the subtypes. The importance of the interfaces for subtype-specific IP3 binding is also supported by the different dynamic conformations of the two subtypes in the apo-states. Furthermore, IP3R1-NT and IP3R3-NT show different IP3-binding affinities and thermal stabilities, but share similar thermodynamic properties for IP3 binding. These results collectively provide new insights into the mechanism underlying IP3 binding to IP3Rs and the subtype-specific regulatory mechanism.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Espectrometria de Massas , Camundongos , Modelos Biológicos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Termodinâmica
9.
Molecules ; 22(8)2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809779

RESUMO

A large portion of proteins in living organisms are membrane proteins which play critical roles in the biology of the cell, from maintenance of the biological membrane integrity to communication of cells with their surroundings. To understand their mechanism of action, structural information is essential. Nevertheless, structure determination of transmembrane proteins is still a challenging area, even though recently the number of deposited structures of membrane proteins in the PDB has rapidly increased thanks to the efforts using X-ray crystallography, electron microscopy, and solid and solution nuclear magnetic resonance (NMR) technology. Among these technologies, solution NMR is a powerful tool for studying protein-protein, protein-ligand interactions and protein dynamics at a wide range of time scales as well as structure determination of membrane proteins. This review provides general and useful guideline for membrane protein sample preparation and the choice of membrane-mimetic media, which are the key step for successful structural analysis. Furthermore, this review provides an opportunity to look at recent applications of solution NMR to structural studies on α-helical membrane proteins through some success stories.


Assuntos
Proteínas de Membrana/química , Animais , Membrana Celular/química , Cristalografia por Raios X , Humanos , Ligantes , Microscopia Eletrônica , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica
10.
Biochim Biophys Acta ; 1853(9): 1980-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25461839

RESUMO

The two major calcium (Ca²âº) release channels on the sarco/endoplasmic reticulum (SR/ER) are inositol 1,4,5-trisphosphate and ryanodine receptors (IP3Rs and RyRs). They play versatile roles in essential cell signaling processes, and abnormalities of these channels are associated with a variety of diseases. Structural information on IP3Rs and RyRs determined using multiple techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (EM), has significantly advanced our understanding of the mechanisms by which these Ca²âº release channels function under normal and pathophysiological circumstances. In this review, structural advances on the understanding of the mechanisms of IP3R and RyR function and dysfunction are summarized. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Assuntos
Retículo Endoplasmático/química , Inositol 1,4,5-Trifosfato/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/genética , Inositol 1,4,5-Trifosfato/metabolismo , Estrutura Terciária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Relação Estrutura-Atividade
11.
Appl Microbiol Biotechnol ; 100(24): 10521-10529, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27470143

RESUMO

Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.


Assuntos
Antineoplásicos/metabolismo , Cetuximab/metabolismo , Receptores ErbB/antagonistas & inibidores , Escherichia coli/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Antineoplásicos/química , Linhagem Celular Tumoral , Cetuximab/química , Cetuximab/genética , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Espectrometria de Massas , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
12.
Planta Med ; 82(1-2): 121-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26366751

RESUMO

To examine whether quercetin interacts with vitamin D receptor, we investigated the effects of quercetin on vitamin D receptor activity in human intestinal Caco-2 cells. The effects of quercetin on the expression of the vitamin D receptor target genes, vitamin D3 24-hydroxylase, cytochrome P450 3A4, multidrug resistance protein 1, and transient receptor potential vanilloid type 6 were measured using quantitative polymerase chain reaction. The vitamin D receptor siRNA was used to assess the involvement of the vitamin D receptor. Vitamin D receptor activation using a vitamin D responsive element-mediated cytochrome P450 3A4 reporter gene assay was investigated in Caco-2 cells transfected with human vitamin D receptor. We also studied the magnitude of the vitamin D receptor activation and/or synergism between 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] and quercetin-like flavonoids. Slight but significant increases in the mRNA expression of cytochrome P450 3A4, vitamin D3 24-hydroxylase, multidrug resistance protein 1, and transient receptor potential vanilloid type 6 were observed after 3 days of continual quercetin treatment. The silencing effect of vitamin D receptor by vitamin D receptor siRNA in Caco-2 cells significantly attenuated the induction of the vitamin D receptor target genes. Moreover, quercetin significantly enhanced cytochrome P450 3A4 reporter activity in Caco-2 cells in a dose-dependent manner, and the expression of exogenous vitamin D receptor further stimulated the vitamin D receptor activity. Quercetin-like flavonoids such as kaempferol stimulated the vitamin D receptor activity in a manner similar to that seen with quercetin. Taken together, the data indicates that quercetin upregulates cytochrome P450 3A4 and multidrug resistance protein 1 expression in Caco-2 cells likely via a vitamin D receptor-dependent pathway.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP3A/metabolismo , Quercetina/farmacologia , Receptores de Calcitriol/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Células CACO-2 , Citocromo P-450 CYP3A/genética , Humanos , Estrutura Molecular , Quercetina/química , Transfecção , Regulação para Cima
13.
Proc Natl Acad Sci U S A ; 110(21): 8507-12, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650371

RESUMO

Calcium-binding protein 1 (CaBP1) is a neuron-specific member of the calmodulin superfamily that regulates several Ca(2+) channels, including inositol 1,4,5-trisphosphate receptors (InsP3Rs). CaBP1 alone does not affect InsP3R activity, but it inhibits InsP3-evoked Ca(2+) release by slowing the rate of InsP3R opening. The inhibition is enhanced by Ca(2+) binding to both the InsP3R and CaBP1. CaBP1 binds via its C lobe to the cytosolic N-terminal region (NT; residues 1-604) of InsP3R1. NMR paramagnetic relaxation enhancement analysis demonstrates that a cluster of hydrophobic residues (V101, L104, and V162) within the C lobe of CaBP1 that are exposed after Ca(2+) binding interact with a complementary cluster of hydrophobic residues (L302, I364, and L393) in the ß-domain of the InsP3-binding core. These residues are essential for CaBP1 binding to the NT and for inhibition of InsP3R activity by CaBP1. Docking analyses and paramagnetic relaxation enhancement structural restraints suggest that CaBP1 forms an extended tetrameric turret attached by the tetrameric NT to the cytosolic vestibule of the InsP3R pore. InsP3 activates InsP3Rs by initiating conformational changes that lead to disruption of an intersubunit interaction between a "hot-spot" loop in the suppressor domain (residues 1-223) and the InsP3-binding core ß-domain. Targeted cross-linking of residues that contribute to this interface show that InsP3 attenuates cross-linking, whereas CaBP1 promotes it. We conclude that CaBP1 inhibits InsP3R activity by restricting the intersubunit movements that initiate gating.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Interações Hidrofóbicas e Hidrofílicas , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos
14.
J Struct Biol ; 190(2): 250-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25871523

RESUMO

Arrestins have important roles in G protein-coupled receptor (GPCR) signaling including desensitization of GPCRs and G protein-independent signaling. Two major intra-molecular interactions, the polar core and the three-element region, maintain arrestins in the basal conformation by connecting the N- and C-domains. Mutations in these regions that disrupt the polar core (R169E or p44) or the three-element (3A) have been reported to interact with GPCRs in a phosphorylation-independent manner, and thus these mutants are referred to as pre-activated arrestins. On the other hand, deletion of 7 residues in the linker region between N- and C-domains (Δ7) freezes arrestins in the inactive state, which has a much lower binding affinity to GPCRs compared to the wild type form. Although these mutants are widely used for functional studies of arrestins, the conformations of these mutants have not yet been fully elucidated. Here, we analyzed the conformational dynamics of ß-arrestin1 with various mutants (R169E, p44, 3A, and Δ7) by hydrogen/deuterium exchange mass spectrometry (HDX-MS). HDX-MS data revealed that pre-activated mutants have more deuterium uptake than the basal state, and also that the regions and degree of increased deuterium uptake differ between pre-activated mutants. Unexpectedly, the inactive mutant also showed increased deuterium uptake in a few regions.


Assuntos
Arrestinas/química , Modelos Moleculares , Animais , Arrestinas/isolamento & purificação , Medição da Troca de Deutério , Espectrometria de Massas , Simulação de Dinâmica Molecular , Conformação Proteica , Ratos , beta-Arrestinas
15.
Biochem Cell Biol ; 93(4): 290-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25789870

RESUMO

Ezrin-radixin-moesin-binding protein 50 (EBP50) is a scaffolding protein expressed in polarized epithelial cells in various organs, including the liver, kidney, and small intestine, in which it regulates the trafficking and targeting cellular proteins. EBP50 contains two postsynaptic density-95/disk-large/ZO-1 homology (PDZ) domains (e.g., PDZ1 and PDZ2) and an ezrin/radixin/moesin-binding (EB) domain. PDZ domains are one of the major scaffolding domains regulating protein-protein interactions with critical biological roles in cell polarity, migration, proliferation, recognition, and cell-cell interaction. PDZ1 and PDZ2 in EBP50 have different ligand selectivity, although several high-resolution structural studies of isolated PDZ1 and PDZ2 showed similar structures. We studied the conformations of full-length EBP50 and isolated PDZ1 and PDZ2 using hydrogen/deuterium exchange mass spectrometry (HDX-MS). The deuterium uptake profiles of isolated PDZ1 and PDZ2 were similar to those of full-length EBP50. Interestingly, PDZ1 was more dynamic than PDZ2, and these PDZ domains underwent different conformational changes upon ligand binding. These results might explain the differences in ligand-selectivity between PDZ1 and PDZ2.


Assuntos
Espectrometria de Massas/métodos , Domínios PDZ , Fosfoproteínas/química , Trocadores de Sódio-Hidrogênio/química , Sequência de Aminoácidos , Deutério , Humanos , Hidrogênio , Dados de Sequência Molecular , Conformação Proteica
16.
Biochem Biophys Res Commun ; 457(1): 50-7, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25542150

RESUMO

Arrestins have important roles in G protein-coupled receptor (GPCR) signaling including desensitization of GPCRs and G protein-independent signaling. There have been four arrestins identified: arrestin1, arrestin2 (e.g. ß-arrestin1), arrestin3 (e.g. ß-arrestin2), and arrestin4. ß-Arrestin1 and ß-arrestin2 are ubiquitously expressed and regulate a broad range of GPCRs, while arrestin1 and arrestin4 are expressed in the visual system. Although the functions of ß-arrestin1 and ß-arrestin2 widely overlap, ß-arrestin2 has broader receptor selectivity, and a few studies have suggested that ß-arrestin1 and ß-arrestin2 have distinct cellular functions. Here, we compared the conformational dynamics of ß-arrestin1 and ß-arrestin2 by hydrogen/deuterium exchange mass spectrometry (HDX-MS). We also used the R169E mutant as a pre-activation model system. HDX-MS data revealed that ß-strands II through IV were more dynamic in ß-arrestin2 in the basal state, while the middle loop was more dynamic in ß-arrestin1. With pre-activation, both ß-arrestin1 and ß-arrestin2 became more flexible, but broader regions of ß-arrestin1 became flexible compared to ß-arrestin2. The conformational differences between ß-arrestin1 and ß-arrestin2 in both the basal and pre-activated states might determine their different receptor selectivities and different cellular functions.


Assuntos
Arrestinas/química , Medição da Troca de Deutério , Espectrometria de Massas , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Proteínas Mutantes/química , Estrutura Secundária de Proteína , Ratos , Alinhamento de Sequência , beta-Arrestinas
17.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1726-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914983

RESUMO

The prokaryotic global transcription factor CRP has been considered to be an ideal model for in-depth study of both the allostery of the protein and the differential utilization of the homologous cyclic nucleotide second messengers cAMP and cGMP. Here, atomic details from the crystal structures of two inactive CRP species, an apo form and a cGMP-bound form, in comparison with a known active conformation, the cAMP-CRP complex, provide macroscopic and microscopic insights into CRP allostery, which is coupled to specific discrimination between the two effectors. The cAMP-induced conformational transition, including dynamic fluctuations, can be driven by the fundamental folding forces that cause water-soluble globular proteins to construct an optimized hydrophobic core, including secondary-structure formation. The observed conformational asymmetries underlie a negative cooperativity in the sequential binding of cyclic nucleotides and a stepwise manner of binding with discrimination between the effector molecules. Additionally, the finding that cGMP, which is specifically recognized in a syn conformation, induces an inhibitory conformational change, rather than a null effect, on CRP supports the intriguing possibility that cGMP signalling could be widely utilized in prokaryotes, including in aggressive inhibition of CRP-like proteins.


Assuntos
Proteína C-Reativa/química , Sistemas do Segundo Mensageiro , Regulação Alostérica , Sequência de Bases , AMP Cíclico/química , GMP Cíclico/química , Primers do DNA , Estrutura Secundária de Proteína
18.
Physiology (Bethesda) ; 27(6): 331-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23223627

RESUMO

Calcium (Ca(2+)) release from reticular stores is a vital regulatory signal in eukaryotes. Recent structural data on large NH(2)-terminal regions of IP(3)Rs and RyRs and their tetrameric arrangement in the full-length context reveal striking mechanistic similarities in Ca(2+) release channel function. A common ancestor found in unicellular genomes underscores the fundamentality of these elements to Ca(2+) release channels.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/fisiologia , Animais , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Humanos , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo
19.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 5): 105-110, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132476

RESUMO

Endolysins produced by bacteriophages play essential roles in the release of phage progeny by degrading the peptidoglycan layers of the bacterial cell wall. Bacteriophage-encoded endolysins have emerged as a new class of antibacterial agents to combat surging antibiotic resistance. The crystal structure of mtEC340M, an engineered endolysin EC340 from the PBEC131 phage that infects Escherichia coli, was determined. The crystal structure of mtEC340M at 2.4 Šresolution consists of eight α-helices and two loops. The three active residues of mtEC340M were predicted by structural comparison with peptidoglycan-degrading lysozyme.


Assuntos
Bacteriófagos , Peptidoglicano , Cristalografia por Raios X , Endopeptidases , Bacteriófagos/química , Antibacterianos/química , Escherichia coli/genética
20.
Int J Biol Macromol ; 232: 123412, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36706883

RESUMO

Disruption of cellular homeostasis by the aggregation of polyglutamine (polyQ) in the huntingtin protein (Htt) leads Huntington's disease (HD). Effective drugs for treating HD have not been developed, as the molecular mechanism underlying HD pathogenesis remains unclear. To develop strategies for inhibiting HD pathogenesis, the intermolecular interaction of Htt with IP3 receptor 1 (IP3R1) was investigated. Peptide (termed ICT60) corresponding to a coiled-coil motif in the C-terminus of IP3R1 was designed. Several biophysical approaches revealed the strong and specific binding of ICT60 to the N-terminal part of HttEx1. ICT60 inhibited not only amyloid formation by HttEx1, but also the cytotoxicity and cell-penetration ability of the amyloid fibrils of HttEx1. The importance of coiled-coil structure was verified by charge-manipulated variants. The coiled-coil structures of ICT60-KK and -EE were partially and largely disrupted, respectively. ICT60 wild-type and -KK inhibited amyloid formation by HttEx1-46Q, whereas ICT60-EE did not block amyloidogenesis. Similarly, the cytotoxicity and cell-penetration ability of the amyloid fibrils of HttEx1-46Q were efficiently inhibited by ICT60 wild-type and ICT60-KK, but not by ICT60-EE. We propose a mechanical model explaining how an IP3 receptor-inspired molecule can modulate cytotoxic amyloid formation by Htt, providing a molecular basis for developing therapeutics to treat HD.


Assuntos
Amiloide , Amiloide/química , Éxons , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA