Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; 32(12): e4170, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31573745

RESUMO

Mapping average axon diameter (AAD) and axon diameter distribution (ADD) in neuronal tissues non-invasively is a challenging task that may have a tremendous effect on our understanding of the normal and diseased central nervous system (CNS). Water diffusion is used to probe microstructure in neuronal tissues, however, the different water populations and barriers that are present in these tissues turn this into a complex task. Therefore, it is not surprising that recently we have witnessed a burst in the development of new approaches and models that attempt to obtain, non-invasively, detailed microstructural information in the CNS. In this work, we aim at challenging and comparing the microstructural information obtained from single diffusion encoding (SDE) with double diffusion encoding (DDE) MRI. We first applied SDE and DDE MR spectroscopy (MRS) on microcapillary phantoms and then applied SDE and DDE MRI on an ex vivo porcine spinal cord (SC), using similar experimental conditions. The obtained diffusion MRI data were fitted by the same theoretical model, assuming that the signal in every voxel can be approximated as the superposition of a Gaussian-diffusing component and a series of restricted components having infinite cylindrical geometries. The diffusion MRI results were then compared with histological findings. We found a good agreement between the fittings and the experimental data in white matter (WM) voxels of the SC in both diffusion MRI methods. The microstructural information and apparent AADs extracted from SDE MRI were found to be similar or somewhat larger than those extracted from DDE MRI especially when the diffusion time was set to 40 ms. The apparent ADDs extracted from SDE and DDE MRI show reasonable agreement but somewhat weaker correspondence was observed between the diffusion MRI results and histology. The apparent subtle differences between the microstructural information obtained from SDE and DDE MRI are briefly discussed.


Assuntos
Axônios/fisiologia , Imagem de Difusão por Ressonância Magnética , Medula Espinal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Animais , Filamentos Intermediários/metabolismo , Imagens de Fantasmas , Suínos
2.
Nat Commun ; 14(1): 908, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36804926

RESUMO

Deep neural networks (DNNs) are powerful tools for compressing and distilling information. Their scale and complexity, often involving billions of inter-dependent parameters, render direct microscopic analysis difficult. Under such circumstances, a common strategy is to identify slow variables that average the erratic behavior of the fast microscopic variables. Here, we identify a similar separation of scales occurring in fully trained finitely over-parameterized deep convolutional neural networks (CNNs) and fully connected networks (FCNs). Specifically, we show that DNN layers couple only through the second cumulant (kernels) of their activations and pre-activations. Moreover, the latter fluctuates in a nearly Gaussian manner. For infinite width DNNs, these kernels are inert, while for finite ones they adapt to the data and yield a tractable data-aware Gaussian Process. The resulting thermodynamic theory of deep learning yields accurate predictions in various settings. In addition, it provides new ways of analyzing and understanding DNNs in general.

3.
Sci Rep ; 8(1): 14333, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254285

RESUMO

Unravelling underlying complex structures from limited resolution measurements is a known problem arising in many scientific disciplines. We study a stochastic dynamical model with a multiplicative noise. It consists of a stochastic differential equation living on a graph, similar to approaches used in population dynamics or directed polymers in random media. We develop a new tool for approximation of correlation functions based on spectral analysis that does not require translation invariance. This enables us to go beyond lattices and analyse general networks. We show, analytically, that this general model has different phases depending on the topology of the network. One of the main parameters which describe the network topology is the spectral dimension [Formula: see text]. We show that the correlation functions depend on the spectral dimension and that only for [Formula: see text] > 2 a dynamical phase transition occurs. We show by simulation how the system behaves for different network topologies, by defining and calculating the Lyapunov exponents on the graph. We present an application of this model in the context of Magnetic Resonance (MR) measurements of porous structure such as brain tissue. This model can also be interpreted as a KPZ equation on a graph.


Assuntos
Modelos Teóricos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Processos Estocásticos
4.
J Magn Reson ; 277: 95-103, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28242566

RESUMO

In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Microscopia , Difusão , Magnetismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA