Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10240-10245, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578222

RESUMO

Cellular compartments formed by biomolecular condensation are widespread features of cell biology. These organelle-like assemblies compartmentalize macromolecules dynamically within the crowded intracellular environment. However, the intermolecular interactions that produce condensed droplets may also create arrested states and potentially pathological assemblies such as fibers, aggregates, and gels through droplet maturation. Protein liquid-liquid phase separation is a metastable process, so maturation may be an intrinsic property of phase-separating proteins, where nucleation of different phases or states arises in supersaturated condensates. Here, we describe the formation of both phase-separated droplets and proteinaceous fibers driven by a de novo designed polypeptide. We characterize the formation of supramolecular fibers in vitro and in bacterial cells. We show that client proteins can be targeted to the fibers in cells using a droplet-forming construct. Finally, we explore the interplay between phase separation and fiber formation of the de novo polypeptide, showing that the droplets mature with a post-translational switch to largely ß conformations, analogous to models of pathological phase separation.


Assuntos
Fenômenos Bioquímicos , Proteínas , Humanos , Proteínas/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Conformação Molecular
2.
Inorg Chem ; 62(6): 2680-2693, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716401

RESUMO

Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.

3.
Inorg Chem ; 60(20): 15310-15320, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34609139

RESUMO

We report the rational design of a tunable Cu(II) chelating scaffold, 2-(((2-((pyridin-2-ylmethyl)amino)ethyl)amino)methyl)phenol, Salpyran (HL). This tetradentate ligand is predicated to have suitable permeation, has an extremely high affinity for Cu compared to clioquinol (pCu7.4 = 10.65 vs 5.91), and exhibits excellent selectivity for Cu(II) over Zn(II) in aqueous media. Solid and solution studies corroborate the formation of a stable [Cu(II)L]+ monocationic species at physiological pH values (7.4). Its action as an antioxidant was tested in ascorbate, tau, and human prion protein assays, which reveal that Salpyran prevents the formation of reactive oxygen species from the binary Cu(II)/H2O2 system, demonstrating its potential use as a therapeutic small molecule metal chelator.


Assuntos
Antioxidantes/farmacologia , Quelantes/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Antioxidantes/síntese química , Antioxidantes/química , Quelantes/síntese química , Quelantes/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Termodinâmica
4.
Cell Mol Life Sci ; 77(23): 5031-5043, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32025743

RESUMO

Misfolding and aggregation of proteins is strongly linked to several neurodegenerative diseases, but how such species bring about their cytotoxic actions remains poorly understood. Here we used specifically-designed optical reporter probes and live fluorescence imaging in primary hippocampal neurons to characterise the mechanism by which prefibrillar, oligomeric forms of the Alzheimer's-associated peptide, Aß42, exert their detrimental effects. We used a pH-sensitive reporter, Aß42-CypHer, to track Aß internalisation in real-time, demonstrating that oligomers are rapidly taken up into cells in a dynamin-dependent manner, and trafficked via the endo-lysosomal pathway resulting in accumulation in lysosomes. In contrast, a non-assembling variant of Aß42 (vAß42) assayed in the same way is not internalised. Tracking ovalbumin uptake into cells using CypHer or Alexa Fluor tags shows that preincubation with Aß42 disrupts protein uptake. Our results identify a potential mechanism by which amyloidogenic aggregates impair cellular function through disruption of the endosomal-lysosomal pathway.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Peptídeos beta-Amiloides/toxicidade , Animais , Células Cultivadas , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/ultraestrutura , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ovalbumina/metabolismo , Fragmentos de Peptídeos/toxicidade , Dobramento de Proteína/efeitos dos fármacos , Ratos
5.
Chem Soc Rev ; 49(15): 5473-5509, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632432

RESUMO

Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-ß architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloidose , Cátions Bivalentes/química , Reagentes de Ligações Cruzadas/química , Humanos , Modelos Moleculares , Conformação Molecular , Impressão Tridimensional , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
6.
Mol Microbiol ; 110(6): 897-913, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29802781

RESUMO

Bacterial biofilms are communities of microbial cells encased within a self-produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid-like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross-complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Biochim Biophys Acta ; 1864(3): 249-259, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26699836

RESUMO

Oligomeric assemblies are postulated to be proximate neurotoxic species in human diseases associated with aberrant protein aggregation. Their heterogeneous and transient nature makes their structural characterization difficult. Size distributions of oligomers of several amyloidogenic proteins, including amyloid ß-protein (Aß) relevant to Alzheimer's disease (AD), have been previously characterized in vitro by photo-induced cross-linking of unmodified proteins (PICUP) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Due to non-physiological conditions associated with the PICUP chemistry, Aß oligomers cross-linked by PICUP may not be representative of in vivo conditions. Here, we examine an alternative Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP), which utilizes naturally occurring divalent copper ions and hydrogen peroxide and does not require photo activation. Our results demonstrate that CHICUP and PICUP applied to the two predominant Aß alloforms, Aß40 and Aß42, result in similar oligomer size distributions. Thioflavin T fluorescence data and atomic force microscopy images demonstrate that both CHICUP and PICUP stabilize Aß oligomers and attenuate fibril formation. Relative to noncross-linked peptides, CHICUP-treated Aß40 and Aß42 cause prolonged disruption to biomimetic lipid vesicles. CHICUP-stabilized Aß oligomers link the amyloid cascade, metal, and oxidative stress hypotheses of AD into a more comprehensive understanding of the molecular basis of AD pathology. Because copper and hydrogen peroxide are elevated in the AD brain, CHICUP-stabilized Aß oligomers are biologically relevant and should be further explored as a new therapeutic target.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Peróxido de Hidrogênio/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/genética , Humanos , Microscopia de Força Atômica , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/genética , Dobramento de Proteína
8.
J Am Chem Soc ; 139(25): 8685-8692, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28578581

RESUMO

We report a peptide-based multichromophoric hydrogelator system, wherein π-electron units with different inherent spectral energies are spatially controlled within peptidic 1-D nanostructures to create localized energy gradients in aqueous environments. This is accomplished by mixing different π-conjugated peptides prior to initiating self-assembly through solution acidification. We can vary the kinetics of the assembly and the degree of self-sorting through the choice of the assembly trigger, which changes the kinetics of acidification. The hydrolysis of glucono-δ-lactone (GdL) provides a slow pH drop that allows for stepwise triggering of peptide components into essentially self-sorted nanostructures based on subtle pKa differences, whereas HCl addition leads to a rapid formation of mixed components within a nanostructure. Using 1H NMR spectroscopy and fiber X-ray diffraction, we determine the conditions and peptide mixtures that favor self-sorting or intimate comixing. Photophysical investigations in the solution phase provide insight into the correlation of energy-transport processes occurring within the assemblies to the structural organization of the π-systems.


Assuntos
Hidrogéis/química , Peptídeos/química , Cinética , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nanoestruturas/química , Difração de Raios X
9.
Soft Matter ; 13(9): 1914-1919, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28186211

RESUMO

We show that the same low molecular weight gelator can form gels using three different methods. Gels were formed from a high pH solution either by adding a salt or by adding an acid; gels were also formed by adding water to a solution of the gelator in an organic solvent. The mechanical properties for the gels formed by the different methods are different from one another. We link this to the network type that is formed, as well as the fibrous structures that are formed. The salt-triggered gels show a significant number of fibres that tend to align. The acid-triggered gels contain many thin fibres, which form an entangled network. The solvent-triggered gels show the presence of spherulitic domains. We show that it is tractable to vary the trigger mechanism for an established, robust gelator to prepare gels with targeted properties as opposed to synthesising new gelators.

10.
Proc Natl Acad Sci U S A ; 111(4): 1539-44, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474780

RESUMO

The Ser52Pro variant of transthyretin (TTR) produces aggressive, highly penetrant, autosomal-dominant systemic amyloidosis in persons heterozygous for the causative mutation. Together with a minor quantity of full-length wild-type and variant TTR, the main component of the ex vivo fibrils was the residue 49-127 fragment of the TTR variant, the portion of the TTR sequence that previously has been reported to be the principal constituent of type A, cardiac amyloid fibrils formed from wild-type TTR and other TTR variants [Bergstrom J, et al. (2005) J Pathol 206(2):224-232]. This specific truncation of Ser52Pro TTR was generated readily in vitro by limited proteolysis. In physiological conditions and under agitation the residue 49-127 proteolytic fragment rapidly and completely self-aggregates into typical amyloid fibrils. The remarkable susceptibility to such cleavage is likely caused by localized destabilization of the ß-turn linking strands C and D caused by loss of the wild-type hydrogen-bonding network between the side chains of residues Ser52, Glu54, Ser50, and a water molecule, as revealed by the high-resolution crystallographic structure of Ser52Pro TTR. We thus provide a structural basis for the recently hypothesized, crucial pathogenic role of proteolytic cleavage in TTR amyloid fibrillogenesis. Binding of the natural ligands thyroxine or retinol-binding protein (RBP) by Ser52Pro variant TTR stabilizes the native tetrameric assembly, but neither protected the variant from proteolysis. However, binding of RBP, but not thyroxine, inhibited subsequent fibrillogenesis.


Assuntos
Amiloide/metabolismo , Pré-Albumina/metabolismo , Prolina/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Amiloidose/genética , Amiloidose/patologia , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Conformação Molecular , Dados de Sequência Molecular , Fenótipo , Pré-Albumina/química , Pré-Albumina/genética , Proteólise
11.
J Nanobiotechnology ; 14(1): 79, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905946

RESUMO

BACKGROUND: A series of amyloidogenic peptides based on the sequence KFFEAAAKKFFE template the silica precursor, tetraethyl orthosilicate to form silica-nanowires containing a cross-ß peptide core. RESULTS: Investigation of the stability of these fibres reveals that the silica layers protect the silica-nanowires allowing them to maintain their shape and physical and chemical properties after incubation with organic solvents such as 2-propanol, ethanol, and acetonitrile, as well as in a strong acidic solution at pH 1.5. Furthermore, these nanowires were thermally stable in an aqueous solution when heated up to 70 °C, and upon autoclaving. They also preserved their conformation following incubation up to 4 weeks under these harsh conditions, and showed exceptionally high physical stability up to 1000 °C after ageing for 12 months. We show that they maintain their ß-sheet peptide core even after harsh treatment by confirming the ß-sheet content using Fourier transform infrared spectra. The silica nanowires show significantly higher chemical and thermal stability compared to the unsiliconised fibrils. CONCLUSIONS: The notable chemical and thermal stability of these silica nanowires points to their potential for use in microelectromechanics processes or fabrication for nanotechnological devices.


Assuntos
Nanofios/química , Peptídeos/química , Dióxido de Silício/química , Sequência de Aminoácidos , Temperatura Alta , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Nanofios/ultraestrutura , Peptídeos/síntese química , Conformação Proteica em Folha beta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
12.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 882-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849399

RESUMO

Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a ß-sheet arrangement reminiscent of the ß-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.


Assuntos
Amiloide/química , Fatores de Terminação de Peptídeos/química , Príons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Fatores de Terminação de Peptídeos/ultraestrutura , Príons/ultraestrutura , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
J Am Chem Soc ; 137(33): 10554-62, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26219086

RESUMO

An ability to design peptide-based nanotubes (PNTs) rationally with defined and mutable internal channels would advance understanding of peptide self-assembly, and present new biomaterials for nanotechnology and medicine. PNTs have been made from Fmoc dipeptides, cyclic peptides, and lock-washer helical bundles. Here we show that blunt-ended α-helical barrels, that is, preassembled bundles of α-helices with central channels, can be used as building blocks for PNTs. This approach is general and systematic, and uses a set of de novo helical bundles as standards. One of these bundles, a hexameric α-helical barrel, assembles into highly ordered PNTs, for which we have determined a structure by combining cryo-transmission electron microscopy, X-ray fiber diffraction, and model building. The structure reveals that the overall symmetry of the peptide module plays a critical role in ripening and ordering of the supramolecular assembly. PNTs based on pentameric, hexameric, and heptameric α-helical barrels sequester hydrophobic dye within their lumens.


Assuntos
Nanotecnologia/métodos , Nanotubos de Peptídeos/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Polimerização , Estrutura Secundária de Proteína , Desdobramento de Proteína , Temperatura
14.
Soft Matter ; 11(6): 1174-81, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25562785

RESUMO

Low molecular weight hydrogels are formed by molecules that form a matrix that immobilises water to form a self-supporting gel. Such gels have uses as biomaterials such as molecular scaffolds and structures for tissue engineering. One class of low molecular weight gelator (LMWG), naphthalene-conjugated dipeptides, has been shown to form hydrogels via self-assembly following a controlled drop in pH. A library of naphthalene-dipeptides has been generated previously although the relationship between the precursor sequence and the resulting self-assembled structures remained unclear. Here, we have investigated the structural details of a set of dipeptide sequences containing alanine (A) and valine (V) conjugated to naphthalene groups substituted with a Br, CN or H at the 6-position. Electron microscopy, circular dichroism and X-ray fibre diffraction shows that these LMWG may be structurally classified by their composition: the molecular packing is determined by the class of conjugate, whilst the chirality of the self-assemblies can be attributed to the dipeptide sequence. This provides insights into the relationship between the precursor sequence and the macromolecular and molecular structures of the fibres that make up the resulting hydrogels.


Assuntos
Hidrogéis/química , Dipeptídeos/química , Concentração de Íons de Hidrogênio , Peso Molecular , Naftalenos/química , Conformação Proteica , Estereoisomerismo
15.
Angew Chem Int Ed Engl ; 54(45): 13327-31, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26434656

RESUMO

Many peptides self-assemble to form amyloid fibrils. We previously explored the sequence propensity to form amyloid using variants of a designed peptide with sequence KFFEAAAKKFFE. These variant peptides form highly stable amyloid fibrils with varied lateral assembly and are ideal to template further assembly of non-proteinaceous material. Herein, we show that the fibrils formed by peptide variants can be coated with a layer of silica to produce silica nanowires using tetraethyl-orthosilicate. The resulting nanowires were characterized using electron microscopy (TEM), X-ray fiber diffraction, FTIR and cross-section EM to reveal a nanostructure with peptidic core. Lysine residues play a role in templating the formation of silica on the fibril surface and, using this library of peptides, we have explored the contributions of lysine as well as arginine to silica templating, and find that sequence plays an important role in determining the physical nature and structure of the resulting nanowires.


Assuntos
Amiloide/química , Nanofios/química , Peptídeos/química , Dióxido de Silício/química , Modelos Moleculares , Tamanho da Partícula
16.
Biochem J ; 450(2): 275-83, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23252554

RESUMO

Amyloid fibril formation is associated with misfolding diseases, as well as fulfilling a functional role. The cross-ß molecular architecture has been reported in increasing numbers of amyloid-like fibrillar systems. The Waltz algorithm is able to predict ordered self-assembly of amyloidogenic peptides by taking into account the residue type and position. This algorithm has expanded the amyloid sequence space, and in the present study we characterize the structures of amyloid-like fibrils formed by three peptides identified by Waltz that form fibrils but not crystals. The structural challenge is met by combining electron microscopy, linear dichroism, CD and X-ray fibre diffraction. We propose structures that reveal a cross-ß conformation with 'steric-zipper' features, giving insights into the role for side chains in peptide packing and stability within fibrils. The amenity of these peptides to structural characterization makes them compelling model systems to use for understanding the relationship between sequence, self-assembly, stability and structure of amyloid fibrils.


Assuntos
Peptídeos beta-Amiloides/química , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Difração de Raios X
17.
Adv Mater ; 36(24): e2311103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489817

RESUMO

ß-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of ß-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent ß-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated ß3-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail. The approach is applied to elucidate the self-assembly mechanisms of recently discovered, distinct structural morphologies of low dimensional nanomaterials, assembled from lipidated ß3-peptide monomers. The resultant structures of the nanobelts and the twisted fibrils are stable throughout subsequent unrestrained all-atom molecular dynamics simulations, and these assemblies display good agreement with the structural features obtained from X-ray fiber diffraction and atomic force microscopy data. This is the first reported, fully-atomistic model of a lipidated ß3-peptide-based nanomaterial, and the computational approach developed here, in combination with experimental fiber diffraction analysis and atomic force microscopy, will be useful in elucidating the atomic scale structure of self-assembled peptide-based and other supramolecular nanomaterials.


Assuntos
Simulação de Dinâmica Molecular , Nanoestruturas , Peptídeos , Nanoestruturas/química , Peptídeos/química , Lipídeos/química , Microscopia de Força Atômica
18.
Commun Biol ; 7(1): 786, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951579

RESUMO

Fibroins' transition from liquid to solid is fundamental to spinning and underpins the impressive native properties of silk. Herein, we establish a fibroin heavy chain fold for the Silk-I polymorph, which could be relevant for other similar proteins, and explains mechanistically the liquid-to-solid transition of this silk, driven by pH reduction and flow stress. Combining spectroscopy and modelling we propose that the liquid Silk-I fibroin heavy chain (FibH) from the silkworm, Bombyx mori, adopts a newly reported ß-solenoid structure. Similarly, using rheology we propose that FibH N-terminal domain (NTD) templates reversible higher-order oligomerization driven by pH reduction. Our integrated approach bridges the gap in understanding FibH structure and provides insight into the spatial and temporal hierarchical self-assembly across length scales. Our findings elucidate the complex rheological behaviour of Silk-I, solutions and gels, and the observed liquid crystalline textures within the silk gland. We also find that the NTD undergoes hydrolysis during standard regeneration, explaining key differences between native and regenerated silk feedstocks. In general, in this study we emphasize the unique characteristics of native and native-like silks, offering a fresh perspective on our fundamental understanding of silk-fibre production and applications.


Assuntos
Bombyx , Fibroínas , Bombyx/metabolismo , Bombyx/química , Animais , Fibroínas/química , Fibroínas/metabolismo , Reologia , Seda/química , Seda/metabolismo , Concentração de Íons de Hidrogênio
19.
Structure ; 32(5): 585-593.e3, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38471506

RESUMO

Protein misfolding is common to neurodegenerative diseases (NDs) including Alzheimer's disease (AD), which is partly characterized by the self-assembly and accumulation of amyloid-beta in the brain. Lysosomes are a critical component of the proteostasis network required to degrade and recycle material from outside and within the cell and impaired proteostatic mechanisms have been implicated in NDs. We have previously established that toxic amyloid-beta oligomers are endocytosed, accumulate in lysosomes, and disrupt the endo-lysosomal system in neurons. Here, we use pioneering correlative cryo-structured illumination microscopy and cryo-soft X-ray tomography imaging techniques to reconstruct 3D cellular architecture in the native state revealing reduced X-ray density in lysosomes and increased carbon dense vesicles in oligomer treated neurons compared with untreated cells. This work provides unprecedented visual information on the changes to neuronal lysosomes inflicted by amyloid beta oligomers using advanced methods in structural cell biology.


Assuntos
Peptídeos beta-Amiloides , Lisossomos , Neurônios , Lisossomos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Neurônios/metabolismo , Tomografia por Raios X/métodos , Animais , Humanos , Microscopia Crioeletrônica/métodos
20.
J Biol Chem ; 287(8): 5650-60, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22157754

RESUMO

The ß-amyloid peptide (Aß) is directly related to neurotoxicity in Alzheimer disease (AD). The two most abundant alloforms of the peptide co-exist under normal physiological conditions in the brain in an Aß(42):Aß(40) ratio of ∼1:9. This ratio is often shifted to a higher percentage of Aß(42) in brains of patients with familial AD and this has recently been shown to lead to increased synaptotoxicity. The molecular basis for this phenomenon is unclear. Although the aggregation characteristics of Aß(40) and Aß(42) individually are well established, little is known about the properties of mixtures. We have explored the biophysical and structural properties of physiologically relevant Aß(42):Aß(40) ratios by several techniques. We show that Aß(40) and Aß(42) directly interact as well as modify the behavior of the other. The structures of monomeric and fibrillar assemblies formed from Aß(40) and Aß(42) mixtures do not differ from those formed from either of these peptides alone. Instead, the co-assembly of Aß(40) and Aß(42) influences the aggregation kinetics by altering the pattern of oligomer formation as evidenced by a unique combination of solution nuclear magnetic resonance spectroscopy, high molecular weight mass spectrometry, and cross-seeding experiments. We relate these observations to the observed enhanced toxicity of relevant ratios of Aß(42):Aß(40) in synaptotoxicity assays and in AD patients.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Cinética , Multimerização Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA