Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674137

RESUMO

The evolving landscape of clinical genetics is becoming increasingly relevant in the field of nephrology. HNF1B-associated renal disease presents with a diverse array of renal and extrarenal manifestations, prominently featuring cystic kidney disease and diabetes mellitus. For the genetic analyses, whole exome sequencing (WES) and multiplex ligation-dependent probe amplification (MLPA) were performed. Bioinformatics analysis was performed with Ingenuity Clinical Insights software (Qiagen). The patient's electronic record was utilized after receiving informed consent. In this report, we present seven cases of HNF1B-associated kidney disease, each featuring distinct genetic abnormalities and displaying diverse extrarenal manifestations. Over 12 years, the mean decline in eGFR averaged -2.22 ± 0.7 mL/min/1.73 m2. Diabetes mellitus was present in five patients, kidney dysplastic lesions in six patients, pancreatic dysplasia, hypomagnesemia and abnormal liver function tests in three patients each. This case series emphasizes the phenotypic variability and the fast decline in kidney function associated with HNF-1B-related disease. Additionally, it underscores that complex clinical presentations may have a retrospectively straightforward explanation through the use of diverse genetic analytical tools.


Assuntos
Fator 1-beta Nuclear de Hepatócito , Fenótipo , Humanos , Fator 1-beta Nuclear de Hepatócito/genética , Masculino , Feminino , Adulto , Sequenciamento do Exoma , Adolescente , Pessoa de Meia-Idade , Criança , Doenças Renais Císticas/genética , Doenças Renais Císticas/diagnóstico , Mutação , Adulto Jovem , Diabetes Mellitus/genética , Diabetes Mellitus/diagnóstico
2.
Am J Physiol Endocrinol Metab ; 325(1): E1-E9, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37134141

RESUMO

We investigate the genetic etiology in a cohort of patients with a clinical, biochemical, and hormonal profile suggestive of a mild and transient form of pseudohypoaldosteronism type 1 (PHA1). Twelve patients with PHA1 from four different families with clinical and biochemical data were analyzed. The coding regions of NR3C2 and SCNN1A genes were sequenced. Human α-epithelial sodium channel (ENaC) wild-type (wt), αPhe226Cys and αPhe226Ser ENaC variants were expressed in Xenopus laevis oocytes to evaluate ENaC activity. The protein expression of α-ENaC wt and mutants was determined by Western blot. All patients were homozygotes for the p.Phe226Cys mutation of the α subunit of ENaC. In functional studies in X. laevis oocytes, p.Phe226Cys caused a significant reduction of ENaC activity (83% reduction), reduced the number of active ENαC mutant channels, and reduced the basal open probability compared with wt. Quantitative Western blot analysis revealed that the reduced activity of ENαC mutant channels was due to a reduced ENaC protein expression for the αPhe226Cys compared with wt. We present 12 patients from four different families with a mild and transient autosomal recessive PHA1 due to a novel homozygous missense mutation in the SCNN1A gene. Functional studies showed that the p.Phe226Cys substitution mutation in ENaC leads to a partial loss of function resulting mainly from both a decrease in the intrinsic ENaC activity and a reduction in channel expression at the protein level. The partial loss of ENaC function could explain the mild phenotype, variable expressivity, and the transient course of the disorder in these patients.NEW & NOTEWORTHY This paper demonstrates that mild autosomal recessive pseudohypoaldosteronism type 1 (PHA1) due to p.Phe226Cys missense mutation in the extracellular domain of ENαC α subunit can be transient, with phenotypic variability even with the normal sweat test, and incomplete penetrance. Functional studies explain the phenotype and denote the importance of the location on the extracellular domain of the SCNN1A p.Phe226Cys mutation for the intrinsic ENaC activity and the channel expression at the protein level.


Assuntos
Pseudo-Hipoaldosteronismo , Humanos , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/metabolismo , Canais Epiteliais de Sódio/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo
3.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073101

RESUMO

Stress is defined as a state of threatened or perceived as threatened homeostasis. The well-tuned coordination of the stress response system is necessary for an organism to respond to external or internal stressors and re-establish homeostasis. Glucocorticoid hormones are the main effectors of stress response and aberrant glucocorticoid signaling has been associated with an increased risk for psychiatric and mood disorders, including schizophrenia, post-traumatic stress disorder and depression. Emerging evidence suggests that life-stress experiences can alter the epigenetic landscape and impact the function of genes involved in the regulation of stress response. More importantly, epigenetic changes induced by stressors persist over time, leading to increased susceptibility for a number of stress-related disorders. In this review, we discuss the role of glucocorticoids in the regulation of stress response, the mechanism through which stressful experiences can become biologically embedded through epigenetic alterations, and we underline potential associations between epigenetic changes and the development of stress-related disorders.


Assuntos
Glucocorticoides/fisiologia , Receptores de Glucocorticoides/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/metabolismo , Epigênese Genética , Humanos , Transdução de Sinais
4.
Crit Rev Clin Lab Sci ; 57(8): 522-531, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32356495

RESUMO

In the era of precision medicine, the tremendous progress in next-generation sequencing technologies has allowed the identification of an ever-increasing number of genes associated with known Mendelian disorders. Neonatal diabetes mellitus is a rare, genetically heterogeneous endocrine disorder diagnosed before 6 months of age. It may occur alone or in the context of genetic syndromes. Neonatal diabetes mellitus has been linked with genetic defects in at least 26 genes to date. Novel mutations in these disease-causing genes are being reported, giving us a better knowledge of the molecular events that occur upon insulin biosynthesis and secretion from the pancreatic ß-cell. Of great importance, some of the identified genes encode proteins that can be therapeutically targeted by drugs per os, leading to transitioning from insulin to sulfonylureas. In this review, we provide an overview of pancreatic ß-cell physiology, present the clinical manifestations and the genetic causes of the different forms of neonatal diabetes, and discuss the application of next-generation sequencing methods in the diagnosis and therapeutic management of neonatal diabetes and on research in this area.


Assuntos
Diabetes Mellitus/metabolismo , Doenças do Recém-Nascido/diagnóstico , Doenças do Recém-Nascido/genética , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/fisiopatologia , Células Secretoras de Insulina/metabolismo , Masculino , Mutação
5.
Pediatr Diabetes ; 21(1): 28-39, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31604004

RESUMO

BACKGROUND: Maturity Onset Diabetes of the Young (MODY) constitutes a genetically and clinically heterogeneous type of monogenic diabetes. It is characterized by early onset, autosomal dominant inheritance and a defect in pancreatic ß-cell insulin secretion. To date, various MODY subtypes have been reported, each one of a distinct genetic etiology. OBJECTIVE: The aim of this study was to identify the molecular defects of 50 patients with MODY employing the methodology of next generation sequencing (NGS) targeted gene panel. METHODS: A panel of seven MODY genes was designed and employed to screen 50 patients fulfilling the MODY diagnostic criteria. Patients with no pathogenic, likely pathogenic or uncertain significance variants detected, were further tested by multiplex ligation-dependent probe amplification (MLPA) for copy number variations (CNVs). RESULTS: Eight different pathogenic or likely pathogenic variants were identified in eight MODY patients (diagnostic rate 16%). Five variants of uncertain significance were also detected in seven MODY patients. Five novel pathogenic and likely pathogenic variants were detected in the genes GCK; p.Cys371X, HNF1A; p.Asn402Tyr, HNF4A; p.Glu285Lys, and ABCC8; p.Met1514Thr and p.Ser1386Phe. Two de novo heterozygous deletions of the entire HNF1B gene were detected in two patients, raising the diagnostic rate to 20%. CONCLUSIONS: Although many MODY patients still remain without exact MODY type identification, the application of NGS methodology provided rapid results, increased diagnostic accuracy, and was cost-effective compared to Sanger sequencing. Accurate genetic diagnosis of the MODY subtype is important for treatment selection, disease prognosis, and family counseling.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Sequenciamento de Nucleotídeos em Larga Escala , Adolescente , Adulto , Criança , Feminino , Testes Genéticos , Quinases do Centro Germinativo/genética , Grécia , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Humanos , Insulina/genética , Masculino , Linhagem , Canais de Potássio Corretores do Fluxo de Internalização/genética , Valor Preditivo dos Testes , Receptores de Sulfonilureias/genética , Adulto Jovem
6.
Endocr Regul ; 54(3): 227-229, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32857717

RESUMO

OBJECTIVE: Aldosterone synthase deficiency (ASD) is a rare, autosomal recessive inherited disease with an overall clinical phenotype of failure to thrive, vomiting, severe dehydration, hyperkalemia, and hyponatremia. Mutations in the CYP11B2 gene encoding aldosterone synthase are responsible for the occurrence of ASD. Defects in CYP11B2 gene have only been reported in a limited number of cases worldwide. Due to this potential life-threatening risk, comprehensive hormonal investigation followed by genetic confirmation is essential for the clinical management of offsprings. CASE PRESENTATION: We herein describe an unusual case of ASD type II in a neonate with faltering growth as a single presenting symptom. To our knowledge, this is the first Greek case of ASD type II reported with confirmed genetic analysis. Next generation sequencing of her DNA revealed the homozygous mutation p.T185I (ACC-ATC) (c.554C>T) (g.7757C>T) in exon 3 of the CYP11B2 gene in the neonate, inherited from both parents who were heterozygotes for the mutation. CONCLUSIONS: Physicians handling neonates with faltering growth, particularly in the initial six weeks of life, should be suspicious of mineralocorticoid insufficiency either as isolated hypoaldosteronism or in the context of congenital adrenal hyperplasia. Essential investigations should be performed and appropriate treatment should be administered promptly without awaiting for the hormonal profile results. Interpretation of the clinical picture and the hormonal profile will guide the analysis of candidate genes. Primary selective hypoaldosteronism is a rare, life threatening disease, but still with an unknown overall population impact. Thus, reporting cases with confirmed gene mutations is of major importance.


Assuntos
Citocromo P-450 CYP11B2/deficiência , Citocromo P-450 CYP11B2/genética , Hipoaldosteronismo/diagnóstico , Feminino , Testes Genéticos , Grécia , Heterozigoto , Humanos , Hipoaldosteronismo/genética , Recém-Nascido , Polimorfismo de Nucleotídeo Único
7.
Eur J Clin Invest ; 49(8): e13129, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31091335

RESUMO

BACKGROUND: Synthetic glucocorticoids are widely used in the treatment of several inflammatory, autoimmune and lymphoproliferative disorders. However, considerable variation in response to therapeutic doses of glucocorticoids has been documented among individuals. The aim of our study was to identify novel glucocorticoid sensitivity-determining genes using genome-wide expression profiling in healthy subjects. METHODS: One hundred one healthy subjects [mean age ± standard error of the mean (SEM); 26.52 ± 0.50 years] were given 0.25 mg dexamethasone at midnight, and serum cortisol concentrations were determined at 08:00 hours the following morning. Subjects were stratified into the 10% most glucocorticoid-sensitive and 10% most glucocorticoid-resistant according to the serum cortisol concentrations. Genomic DNA, RNA and plasma samples were obtained in the 22 subjects one month later. RESULTS: Transcriptomic analysis showed variability between glucocorticoid-resistant and glucocorticoid-sensitive subjects. One hundred thirty-three genes were upregulated and 49 downregulated in the glucocorticoid-resistant compared to the glucocorticoid-sensitive group. Further analysis revealed differences between 3 glucocorticoid-resistant and 3 glucocorticoid-sensitive subjects. The majority of the 1058 upregulated genes and 1139 downregulated genes were found to participate in telomere maintenance, systemic lupus erythematosus and Alzheimer's disease. Interestingly, Synuclein A, a key molecule in Parkinson's disease, was upregulated in the subgroup of glucocorticoid-sensitive subjects. CONCLUSIONS: We have identified differences in tissue sensitivity to glucocorticoids among healthy subjects at the transcriptomic level. These differences are associated with differential expression of genes related to autoimmune and neurological disorders.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Transcriptoma/efeitos dos fármacos , Adulto , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Regulação para Baixo/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Humanos , Hidrocortisona/sangue , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/genética , Masculino , Receptores de Glucocorticoides/genética , Homeostase do Telômero/efeitos dos fármacos , Homeostase do Telômero/genética , Regulação para Cima/efeitos dos fármacos , alfa-Sinucleína/sangue
8.
Clin Endocrinol (Oxf) ; 85(6): 845-851, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27293068

RESUMO

BACKGROUND: Germline mutations of the KCNJ5 gene encoding Kir3·4, a member of the inwardly rectifying K+ channel, have been identified in 'normal' adrenal glands, patients with familial hyperaldosteronism (FH) type III, aldosterone-producing adenomas (APAs) and sporadic cases of primary aldosteronism (PA). OBJECTIVE: To present two novel KCNJ5 gene mutations in hypertensive patients without PA, but with Adrenocorticotropic hormone (ACTH)-dependent aldosterone hypersecretion. DESIGN AND PATIENTS: Two hypertensive patients without PA, who exhibited enhanced ACTH-dependent response of aldosterone secretion, underwent genetic testing for the presence of the CYP11B1/CYP11B2 chimeric gene and KCNJ5 gene mutations. Genomic DNA was isolated from peripheral white blood cells, and the exons of the entire coding regions of the above genes were amplified and sequenced. Electrophysiological studies were performed to determine the effect of identified mutation(s) on the membrane reversal potentials. Structural biology studies were also carried out. RESULTS: Two novel germline heterozygous KCNJ5 mutations, p.V259M and p.Y348N, were detected in the two subjects. Electrophysiological studies showed that the Y348N mutation resulted in significantly less negative reversal potentials, suggesting loss of ion selectivity, while the V259M mutation did not affect the Kir3.4 current. In the mutated structural biology model, the N348 mutant resulted in significant loss of the ability for hydrogen bonding, while the M259 mutant was capable of establishing weaker interactions. The CYP11B1/CYP11B2 chimeric gene was not detected. CONCLUSIONS: These findings expand on the clinical spectrum of phenotypes associated with KCNJ5 mutations and implicate these mutations in the pathogenesis of hypertension associated with increased aldosterone response to ACTH stimulation.


Assuntos
Hormônio Adrenocorticotrópico/farmacologia , Aldosterona/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Mutação em Linhagem Germinativa/fisiologia , Hipertensão/etiologia , Citocromo P-450 CYP11B2/genética , Fenômenos Eletrofisiológicos , Feminino , Estudos de Associação Genética , Humanos , Hiperaldosteronismo , Masculino , Pessoa de Meia-Idade , Esteroide 11-beta-Hidroxilase/genética
9.
Eur J Clin Invest ; 46(1): 42-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26541474

RESUMO

BACKGROUND: Chrousos syndrome is a rare pathologic condition characterized by generalized, partial resistance of target tissues to glucocorticoids and caused by inactivating mutations of the human glucocorticoid receptor (hGR) gene. A novel case of Chrousos syndrome has been reported in a patient with adrenal incidentaloma, who harboured a heterozygous point mutation in the hGR gene, which resulted in threonine (T) to isoleucine (I) substitution at amino acid position 556 in the ligand-binding domain of the receptor. OBJECTIVE: To delineate the molecular mechanisms through which the mutant receptor hGRαT556I causes Chrousos syndrome. DESIGN AND RESULTS: Compared with the wild-type receptor, the mutant receptor hGRαT556I demonstrated 50% reduction in its ability to transactivate glucocorticoid-responsive genes and in the affinity for the ligand, 30% increase in the ability to transrepress the nuclear factor-κB-target genes and a 3,4-fold delay in the cytoplasmic-to-nuclear translocation. The mutant receptor hGRαT556I did not exert a dominant negative effect upon the hGRα-mediated transcriptional activity; it preserved its ability to bind to DNA and interacted with the glucocorticoid receptor-interacting protein 1 coactivator mostly through its activation function-1 domain. Structural biology studies revealed that the T556I mutation caused disruption of the hydrogen bond formed by the T556 with the =O group of P637 backbone, which resulted in a significant relocation of the P637-bearing loop. This conformational alteration affected the local 3D arrangement of the receptor and hence the electrostatic surface of the region. CONCLUSIONS: The hGRαT556I causes Chrousos syndrome by impairing multiple steps of the glucocorticoid signal transduction pathway.


Assuntos
Erros Inatos do Metabolismo/genética , Receptores de Glucocorticoides/deficiência , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Dexametasona/metabolismo , Glucocorticoides/metabolismo , Células HCT116 , Células HeLa , Humanos , Coativador 2 de Receptor Nuclear/metabolismo , Mutação Puntual , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais
10.
Curr Opin Pediatr ; 28(4): 545-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27386973

RESUMO

PURPOSE OF REVIEW: Pituitary stalk interruption syndrome (PSIS) is characterized by a thin or absent pituitary stalk, hypoplasia of the adenohypophysis, and ectopic neurohypophysis. PSIS manifestations include a wide spectrum of clinical phenotypes and pituitary hormone deficiencies of variable degree and timing of onset. In this review, recent advances with respect to the cause of PSIS, clinical characteristics leading to earlier diagnosis, and management are outlined. RECENT FINDINGS: Diagnosis of PSIS is often delayed probably because clinical findings such as neonatal hypoglycemia, cholestasis, and/or micropenis as well as decreasing growth velocity are not appropriately and timely validated. Recently, molecular defects in various genes have been associated with PSIS albeit in a small number of cases. These findings suggest that PSIS belongs to the spectrum of holoprosencephaly-related defects. Phenotype-genotype discordance and the existence of asymptomatic carriers of a given molecular aberration indicate that penetrance may be modified favorably or unfavorably by the presence of other genetic and/or environmental factors. SUMMARY: PSIS constitutes an antenatal anatomical defect. Neonatal hypoglycemia, cholestasis, and/or micropenis with or without growth deficit should raise the possibility of combined pituitary hormone deficiency, a life-threatening condition in cases of coexisting cortisol deficiency. It is important to search for molecular defects in all PSIS cases, as precise identification of the cause is a prerequisite for genetic counseling.


Assuntos
Colestase , Doenças dos Genitais Masculinos , Hipoglicemia , Pênis/anormalidades , Hipófise/patologia , Colestase/diagnóstico , Colestase/etiologia , Colestase/terapia , Aconselhamento Genético , Predisposição Genética para Doença , Doenças dos Genitais Masculinos/diagnóstico , Doenças dos Genitais Masculinos/etiologia , Doenças dos Genitais Masculinos/genética , Doenças dos Genitais Masculinos/terapia , Proteínas de Homeodomínio , Humanos , Hipoglicemia/diagnóstico , Hipoglicemia/etiologia , Hipoglicemia/genética , Hipoglicemia/terapia , Hipopituitarismo/genética , Hipopituitarismo/fisiopatologia , Hipopituitarismo/terapia , Mutação/genética , Síndrome , Proteínas Supressoras de Tumor
11.
Eur J Clin Invest ; 45(8): 782-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26031419

RESUMO

BACKGROUND: Natural mutations in the human glucocorticoid receptor (hGR, NR3C1) gene cause Chrousos syndrome, a rare condition characterized by generalized, partial, target-tissue insensitivity to glucocorticoids. OBJECTIVE: To present a new case of Chrousos syndrome caused by a novel mutation in the hGR gene, and to elucidate the molecular mechanisms through which the natural mutant receptor affects glucocorticoid signal transduction. DESIGN AND RESULTS: The index case presented with hirsutism, acne, alopecia, anxiety, fatigue and irregular menstrual cycles, but no clinical manifestations suggestive of Cushing's syndrome. Endocrinologic evaluation revealed elevated 08:00 h plasma adrenocorticotropic hormone, serum cortisol and androstenedione concentrations and increased urinary free cortisol excretion. The patient harbored a novel A > G transition at nucleotide position 2177, which resulted in histidine (H) to arginine (R) substitution at amino acid position 726 of the receptor (c.2177A > G, p.H726R). Compared with the wild-type receptor, the mutant receptor hGRαH726R demonstrated decreased ability to transactivate glucocorticoid-responsive genes and to transrepress the nuclear factor-κB signalling pathway, displayed 55% lower affinity for the ligand and a four-fold delay in nuclear translocation, and interacted with the glucocorticoid receptor-interacting protein 1 coactivator mostly through its activation function-1 domain. Finally, a 3-dimensional molecular modelling study of the H726R mutation revealed a significant structural shift in the rigidity of helix 10 of the receptor, which resulted in reduced flexibility and decreased affinity of the mutant receptor for binding to the ligand. CONCLUSIONS: The natural mutant receptor hGRαH726R impairs multiple steps of glucocorticoid signal transduction, thereby decreasing tissue sensitivity to glucocorticoids.


Assuntos
Erros Inatos do Metabolismo/genética , Receptores de Glucocorticoides/deficiência , Acne Vulgar/genética , Adulto , Alopecia/genética , Animais , Ansiedade/genética , Western Blotting , Células COS , Chlorocebus aethiops , Fadiga/genética , Feminino , Regulação da Expressão Gênica , Genótipo , Hirsutismo/genética , Humanos , Distúrbios Menstruais/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Receptores de Glucocorticoides/genética , Síndrome
12.
Eur J Clin Invest ; 45(12): 1306-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479047

RESUMO

BACKGROUND: Transient generalized glucocorticoid hypersensitivity is a rare disorder characterized by increased tissue sensitivity to glucocorticoids and compensatory hypo-activation of the hypothalamic-pituitary-adrenal axis. The condition itself and the underlying molecular mechanisms have not been elucidated. OBJECTIVE: To present the clinical manifestations, endocrinologic evaluation and transcriptomic profile in a patient with transient generalized glucocorticoid hypersensitivity. DESIGN AND RESULTS: A 9-year-old girl presented with an 8-month history of clinical manifestations suggestive of Cushing syndrome. Endocrinologic evaluation revealed undetectable 08:00 h ACTH (<1 pg/mL) and cortisol (0·025 µg/dL) concentrations, which remained decreased throughout the 24-h period and did not respond to stimulation with ovine CRH. The disease gradually resolved spontaneously over the ensuing 3 months. Sequencing of the human glucocorticoid receptor gene revealed no mutations or polymorphisms. Western blot analysis in peripheral blood mononuclear cells revealed equal protein expression of hGRα of the patient in the disease and postresolution phases compared with a control subject. Transcriptomic analysis in peripheral blood mononuclear cells in the disease and postresolution phases identified 903 differentially expressed genes. Of these, 106 genes were up-regulated and 797 were down-regulated in the disease compared with the resolution phase. Bioinformatics analysis on the differentially expressed gene networks revealed Nuclear Factor-κB as the predominant transcription factor influencing the expression of the majority of differentially expressed genes. CONCLUSIONS: Our findings indicate that a transient postreceptor defect, or a virus- or bacterium-encoded molecule, may have enhanced glucocorticoid signal transduction, leading to transient generalized glucocorticoid hypersensitivity and hypo-activation of the HPA axis.


Assuntos
Glucocorticoides/genética , Hipersensibilidade/genética , Receptores de Glucocorticoides/genética , Hormônio Adrenocorticotrópico/deficiência , Criança , Feminino , Humanos , Hidrocortisona/deficiência , Remissão Espontânea
13.
Hormones (Athens) ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980656

RESUMO

INTRODUCTION: Hepatocyte nuclear factor-1 beta (HNF1B) encodes a homeodomain-containing transcription factor, which is expressed early in embryogenesis and is involved in the development of multiple tissues and organs. HNF1B mutations cause complex multisystem disorders, with renal developmental disease and maturity onset diabetes of the young (HNF1B MODY), a rare cause of diabetes mellitus, being representative features. METHODS: We present two adolescent boys from different socioeconomic backgrounds who were diagnosed with genetically confirmed HNF1B MODY following hospitalization for diabetic ketoacidosis in the first case and after diagnostic work-up due to impaired glucose tolerance in the second case. Multisystem manifestations, including pancreatic hypoplasia and early-onset diabetes mellitus (DM), renal cysts, hypomagnesemia, hyperuricemia, liver and biliary impairment, genital tract malformations, and primary hyperparathyroidism were also present, strongly suggesting HNF1B MODY. RESULTS: The first patient was treated with subcutaneous insulin but was lost to follow-up due to social reasons. Conversely, early diagnosis in the second patient allowed the management of multisystem defects by a multidisciplinary team of experts. Moreover, manifestation of HNF1B MODY in the form of diabetic ketoacidosis was prevented and a structured diabetes training program has proven successful in regulating glycemic control, postponing the necessity for insulin treatment. CONCLUSION: Early genetic work-up of patients with dysglycemia associated with a specific phenotype suggestive of HNF1B MODY is extremely important in the care of children and adolescents with diabetes since it ensures that early and optimal management is initiated, thereby preventing the onset of life-threatening diabetic ketoacidosis and other multisystem complications and/or comorbidities.

14.
Hormones (Athens) ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39048863

RESUMO

PURPOSE: In addition to chromosomal abnormalities, several genes have been implicated as causes of disorders of sex development (DSD). The NR5A1 gene expresses SF1, a transcription factor that plays a role in steroidogenesis by controlling multiple stages of adrenal and gonadal development, its mutations having been reported in cases of DSD. CASE PRESENTATION: A 15-year-old teenager was admitted to the Children's ICU of a tertiary center due to acute encephalitis. On physical examination, labia majora and minora, open vaginal opening, and a 4.8 cm phallus (stretched length) in the anatomical position of the clitoris were identified. The patient also presented with hirsutism, breast development was Tanner stage I, and pubic hair was Tanner V. Medical history revealed primary amenorrhea. Imaging studies revealed oval formations primarily compatible with testicular parenchyma in the anatomical location of the inguinal ducts. The karyotype identified a 46,XY individual, while whole exome sequencing (WES) revealed the presence of a heterozygous pathogenic splice site variant of the NR5A1 gene (NM_004959.5), c.990G > C, p.Glu330Asp, which, on further genetic testing of the parents, was proven to be de novo. According to psychiatric assessment, the patient self-identifies as a female. Laparoscopic exploration showed no residual Mullerian ducts or the presence of testicular tissue. A gonadectomy was performed and hormone replacement therapy with estrogens was initiated. CONCLUSION: We describe a rare case of 46,XY DSD in an phenotypically female adolescent carrying the novel de novo p.Glu330Asp variant of the NR5A1 gene. We also highlight the frequent delay in diagnosis of ambiguous external genitalia.

15.
Pediatr Diabetes ; 14(7): 526-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23517481

RESUMO

OBJECTIVE: Maturity-Onset Diabetes of the Young (MODY) is the most common type of monogenic diabetes accounting for 1-2% of the population with diabetes. The relative incidence of HNF1A-MODY (MODY3) is high in European countries; however, data are not available for the Greek population. The aims of this study were to determine the relative frequency of MODY3 in Greece, the type of the mutations observed, and their relation to the phenotype of the patients. DESIGN AND METHODS: Three hundred ninety-five patients were referred to our center because of suspected MODY during a period of 15 yr. The use of Denaturing Gradient Gel Electrophoresis of polymerase chain reaction amplified DNA revealed 72 patients carrying Glucokinase gene mutations (MODY2) and 8 patients carrying HNF1A gene mutations (MODY3). After using strict criteria, 54 patients were selected to be further evaluated by direct sequencing or by multiplex ligation probe amplification (MLPA) for the presence of HNF1A gene mutations. RESULTS: In 16 unrelated patients and 13 of their relatives, 15 mutations were identified in the HNF1A gene. Eight of these mutations were previously reported, whereas seven were novel. Clinical features, such as age of diabetes at diagnosis or severity of hyperglycemia, were not related to the mutation type or location. CONCLUSIONS: In our cohort of patients fulfilling strict clinical criteria for MODY, 12% carried an HNF1A gene mutation, suggesting that defects of this gene are responsible for a significant proportion of monogenic diabetes in the Greek population. No clear phenotype-genotype correlations were identified.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Mutação em Linhagem Germinativa , Grécia/epidemiologia , Humanos , Lactente , Masculino , Fenótipo
16.
Hormones (Athens) ; 22(1): 143-148, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36348260

RESUMO

INTRODUCTION: Hyperpigmentation of skin and mucous membranes comprises a hallmark of the clinical diagnosis of Addison's disease. However, there have been reports of patients with adrenal insufficiency from diverse causes who did not develop hyperpigmentation. The pathophysiology responsible for the absence of increased pigmentation is not clearly defined in many cases. CASE PRESENTATION: We present a patient with isolated glucocorticoid deficiency due to two novel heterozygous variants in the sphingosine-1-phosphate lyase 1 (SPGL1) gene that did not develop any hyperpigmentation. DISCUSSION: We elaborate on the presumed mechanism of the absence of hyperpigmentation in adrenal insufficiency due to SPGL1 deficiency and discuss the other reported cases of Addison's disease without hyperpigmentation and the possible mechanism accounted for. CONCLUSION: Absence of hyperpigmentation, a basic component of the clinical diagnosis of Addison's disease, may lead to delay of a critical diagnosis, while causes that result in adrenal insufficiency without hyperpigmentation should explicitly be considered in pediatric cases where adrenal failure is documented by clinical symptomatology and biochemistry.


Assuntos
Doença de Addison , Insuficiência Adrenal , Hiperpigmentação , Humanos , Criança , Doença de Addison/complicações , Doença de Addison/diagnóstico , Insuficiência Adrenal/complicações , Hiperpigmentação/etiologia , Hiperpigmentação/genética , Pele
17.
Eur J Hum Genet ; 30(10): 1191-1194, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35277652

RESUMO

The pituitary gland, as a nodal component of the endocrine system, is responsible for the regulation of growth, reproduction, metabolism, and homeostasis. Although pituitary formation though the hierarchical action of different transcription factors is well studied in mouse models, there is little evidence of the analogous developmental processes in humans. Herein, we present a female patient with a phenotype that includes blepharoptosis-ptosis-epicanthus syndrome and premature ovarian failure. Clinical exome sequencing revealed two heterozygous variants in two genes, LHX4 (pathogenic) and NR5A1 (VUS) genes and no mutation in FOXL2 gene. We propose a model of genetic interaction between LHX4 and NR5A1 during pituitary and ovarian development that may lead to a similar phenotype mediated by reduced FOXL2 expression.


Assuntos
Blefarofimose , Insuficiência Ovariana Primária , Animais , Blefarofimose/genética , Feminino , Fatores de Transcrição Forkhead/genética , Genes Controladores do Desenvolvimento , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Hipófise/metabolismo , Insuficiência Ovariana Primária/genética , Fator Esteroidogênico 1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Biomedicines ; 10(1)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35052863

RESUMO

Significant inter-individual variation in terms of susceptibility to several stress-related disorders, such as myocardial infarction and Alzheimer's disease, and therapeutic response has been observed among healthy subjects. The molecular features responsible for this phenomenon have not been fully elucidated. Proteomics, in association with bioinformatics analysis, offer a comprehensive description of molecular phenotypes with clear links to human disease pathophysiology. The aim of this study was to conduct a comparative plasma proteomics analysis of glucocorticoid resistant and glucocorticoid sensitive healthy subjects and provide clues of the underlying physiological differences. For this purpose, 101 healthy volunteers were given a very low dose (0.25 mg) of dexamethasone at midnight, and were stratified into the 10% most glucocorticoid sensitive (S) (n = 11) and 10% most glucocorticoid resistant (R) (n = 11) according to the 08:00 h serum cortisol concentrations determined the following morning. One month following the very-low dose dexamethasone suppression test, DNA and plasma samples were collected from the 22 selected individuals. Sequencing analysis did not reveal any genetic defects in the human glucocorticoid receptor (NR3C1) gene. To investigate the proteomic profile of plasma samples, we used Liquid Chromatography-Mass Spectrometry (LC-MS/MS) and found 110 up-regulated and 66 down-regulated proteins in the S compared to the R group. The majority of the up-regulated proteins in the S group were implicated in platelet activation. To predict response to cortisol prior to administration, a random forest classifier was developed by using the proteomics data in order to distinguish S from R individuals. Apolipoprotein A4 (APOA4) and gelsolin (GSN) were the most important variables in the classification, and warrant further investigation. Our results indicate that a proteomics signature may differentiate the S from the R healthy subjects, and may be useful in clinical practice. In addition, it may provide clues of the underlying molecular mechanisms of the chronic stress-related diseases, including myocardial infarction and Alzheimer's disease.

19.
Hormones (Athens) ; 21(4): 525-536, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36044182

RESUMO

PURPOSE: Although ACTH is considered a secondary regulator of aldosterone production, patients with apparent essential hypertension have been treated with mineralocorticoid receptor antagonists (MRAs). In this study, we aimed to identify potentially damaging variants that might be implicated in the phenotype of a well-characterized cohort of 21 hypertensive patients without PA but with stress-induced aldosterone hypersecretion. The patients' blood pressure was normalized though MRA administration. METHODS: Genetic screening was performed through whole-exome sequencing (WES), and variants in PA-associated or in ion-channels of aldosterone-regulating genes were prioritized. Variants with population frequency < 0.01, predicted to alter protein structure and classified as likely pathogenic by in silico tools, were retained. RESULTS: Qualifying variants were identified in nine of the 21 patients screened. Seven patients were carriers of six potentially damaging variants in six genes associated with PA (KCNK9, KCNK5, ATP13A3, SLC26A2, CACNA1H, and CACNA1D). A novel variant in the KCNK9 gene (p.V221M) is reported. Our analysis revealed two variants in two novel susceptibility genes for aldosterone hypersecretion, namely, KCNK16 (p.P255H) and CACNA2D3 (p.V557I). CONCLUSION: WES revealed potentially damaging germline variants in genes participating in aldosterone synthesis/regulating pathways in 9/21 patients of our cohort. The variants identified might play a role in aldosterone hypersecretion under conditions of stress. The potential pathogenicity of these variants should be examined in future functional studies.


Assuntos
Hiperaldosteronismo , Hipertensão , Humanos , Aldosterona/metabolismo , Testes Genéticos , Hiperaldosteronismo/genética , Hiperaldosteronismo/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/complicações , Antagonistas de Receptores de Mineralocorticoides
20.
Cells ; 11(13)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805171

RESUMO

Combined pituitary hormone deficiency (CPHD) is characterized by deficiency of growth hormone and at least one other pituitary hormone. Pathogenic variants in more than 30 genes expressed during the development of the head, hypothalamus, and/or pituitary have been identified so far to cause genetic forms of CPHD. However, the etiology of around 85% of the cases remains unknown. The aim of this study was to unveil the genetic etiology of CPHD due to congenital hypopituitarism employing whole exome sequencing (WES) in two newborn patients, initially tested and found to be negative for PROP1, LHX3, LHX4 and HESX1 pathogenic variants by Sanger sequencing and for copy number variations by MLPA. In this study, the application of WES in these CPHD newborns revealed the presence of three different heterozygous gene variants in each patient. Specifically in patient 1, the variants BMP4; p.Ala42Pro, GNRH1; p.Arg73Ter and SRA1; p.Gln32Glu, and in patient 2, the SOX9; p.Val95Ile, HS6ST1; p.Arg306Gln, and IL17RD; p.Pro566Ser were identified as candidate gene variants. These findings further support the hypothesis that CPHD constitutes an oligogenic rather than a monogenic disease and that there is a genetic overlap between CPHD and congenital hypogonadotropic hypogonadism.


Assuntos
Proteínas de Homeodomínio , Hipopituitarismo , Variações do Número de Cópias de DNA/genética , Proteínas de Homeodomínio/genética , Humanos , Hipopituitarismo/genética , Recém-Nascido , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA