Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Biol Sci ; 291(2023): 20240089, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38807517

RESUMO

Ecological resilience is the capability of an ecosystem to maintain the same structure and function and avoid crossing catastrophic tipping points (i.e. undergoing irreversible regime shifts). While fundamental for management, concrete ways to estimate and interpret resilience in real ecosystems are still lacking. Here, we develop an empirical approach to estimate resilience based on the stochastic cusp model derived from catastrophe theory. The cusp model models tipping points derived from a cusp bifurcation. We extend cusp in order to identify the presence of stable and unstable states in complex natural systems. Our Cusp Resilience Assessment (CUSPRA) has three characteristics: (i) it provides estimates on how likely a system is to cross a tipping point (in the form of a cusp bifurcation) characterized by hysteresis, (ii) it assesses resilience in relation to multiple external drivers and (iii) it produces straightforward results for ecosystem-based management. We validate our approach using simulated data and demonstrate its application using empirical time series of an Atlantic cod population and marine ecosystems in the North Sea and the Mediterranean Sea. We show that Cusp Resilience Assessment is a powerful method to empirically estimate resilience in support of a sustainable management of our constantly adapting ecosystems under global climate change.


Assuntos
Mudança Climática , Ecossistema , Animais , Gadus morhua/fisiologia , Mar Mediterrâneo , Modelos Biológicos , Conservação dos Recursos Naturais
2.
J Anim Ecol ; 91(12): 2465-2479, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36415049

RESUMO

Cumulative human pressures and climate change can induce nonlinear discontinuous dynamics in ecosystems, known as regime shifts. Regime shifts typically imply hysteresis, a lacking or delayed system response when pressures are reverted, which can frustrate restoration efforts. Here, we investigate whether the northern Adriatic Sea fish and macroinvertebrate community, as depicted by commercial fishery landings, has undergone regime shifts over the last 40 years, and the reversibility of such changes. We use a stochastic cusp model to show that, under the interactive effect of fishing pressure and water warming, the community reorganized through discontinuous changes. We found that part of the community has now reached a new stable state, implying that a recovery towards previous baselines might be impossible. Interestingly, total landings remained constant across decades, masking the low resilience of the community. Our study reveals the importance of carefully assessing regime shifts and resilience in marine ecosystems under cumulative pressures and advocates for their inclusion into management.


Assuntos
Ecossistema , Dinâmica não Linear , Animais , Humanos
3.
Proc Biol Sci ; 286(1898): 20182877, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30862289

RESUMO

Collapses and regime changes are pervasive in complex systems (such as marine ecosystems) governed by multiple stressors. The demise of Atlantic cod ( Gadus morhua) stocks constitutes a text book example of the consequences of overexploiting marine living resources, yet the drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why rebuilding of collapsed fish stocks such as cod is often slow or absent. Here, we apply the stochastic cusp model, based on catastrophe theory, and show that collapse and recovery of cod stocks are potentially driven by the specific interaction between exploitation pressure and environmental drivers. Our statistical modelling study demonstrates that for most of the cod stocks, ocean warming could induce a nonlinear discontinuous relationship between fishing pressure and stock size, which would explain hysteresis in their response to reduced exploitation pressure. Our study suggests further that a continuing increase in ocean temperatures will probably limit productivity and hence future fishing opportunities for most cod stocks of the Atlantic Ocean. Moreover, our study contributes to the ongoing discussion on the importance of climate and fishing effects on commercially exploited fish stocks, highlighting the importance of considering discontinuous dynamics in holistic ecosystem-based management approaches, particularly under climate change.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Gadus morhua/fisiologia , Aquecimento Global , Temperatura , Animais , Oceano Atlântico , Modelos Biológicos , Dinâmica Populacional , Água do Mar/química , Processos Estocásticos
4.
Glob Chang Biol ; 22(8): 2729-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27082729

RESUMO

How have North Sea skate and shark assemblages changed since the early 20th century when bottom trawling became widespread, whilst their environment became increasingly impacted by fishing, climate change, habitat degradation and other anthropogenic pressures? This article examines long-term changes in the distribution and occurrence of the elasmobranch assemblage of the southern North Sea, based on extensive historical time series (1902-2013) of fishery-independent survey data. In general, larger species (thornback ray, tope, spurdog) exhibited long-term declines, and the largest (common skate complex) became locally extirpated (as did angelshark). Smaller species increased (spotted and starry ray, lesser-spotted dogfish) as did smooth-hound, likely benefiting from greater resilience to fishing and/or climate change. This indicates a fundamental shift from historical dominance of larger, commercially valuable species to current prevalence of smaller, more productive species often of low commercial value. In recent years, however, some trends have reversed, with the (cold-water associated) starry ray now declining and thornback ray increasing. This shift may be attributed to (i) fishing, including mechanised beam trawling introduced in the 1960s-1970s, and historical target fisheries for elasmobranchs; (ii) climate change, currently favouring warm-water above cold-water species; and (iii) habitat loss, including potential degradation of coastal and outer estuarine nursery habitats. The same anthropogenic pressures, here documented to have impacted North Sea elasmobranchs over the past century, are likewise impacting shelf seas worldwide and may increase in the future; therefore, parallel changes in elasmobranch communities in other regions are to be expected.


Assuntos
Mudança Climática , Oceanos e Mares , Tubarões/crescimento & desenvolvimento , Rajidae/crescimento & desenvolvimento , Animais , Pesqueiros , Mar do Norte
5.
Sci Rep ; 13(1): 289, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609587

RESUMO

Recovery of depleted fish stocks is an important goal for fisheries management and crucial to sustain important ecosystem functions as well as global food security. Successful recovery requires adjusting fishing mortality to stock productivity but can be prevented or inhibited by additional anthropogenic impacts such as climate change. Despite management measures to recover fish stocks being in place in legislations such as the European Union´s Common Fisheries Policy (CFP), recovery can be hindered by the occurrence of regime shift dynamics. Such non-linear discontinuous dynamics imply tipping points and bear the characteristics of abrupt change, hysteresis and non-stationary functional relationships. We here used the recent reform of the CFP as a natural experiment to investigate the existence of regime shift dynamics and its potential effects on the recovery potential on six strongly fished or even depleted commercial fish stocks in the North Sea. Using a set of statistical approaches we show that regime shift dynamics exist in all six fish stocks as a response to changes in fishing pressure and temperature. Our results furthermore demonstrate the context-dependence of such dynamics and hence the ability of management measures to rebuild depleted fish stocks, leading to either failed recovery or positive tipping.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Pesqueiros , Mudança Climática , Mar do Norte , Dinâmica Populacional , Peixes
6.
Sci Rep ; 11(1): 14259, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253825

RESUMO

Understanding tipping point dynamics in harvested ecosystems is of crucial importance for sustainable resource management because ignoring their existence imperils social-ecological systems that depend on them. Fisheries collapses provide the best known examples for realizing tipping points with catastrophic ecological, economic and social consequences. However, present-day fisheries management systems still largely ignore the potential of their resources to exhibit such abrupt changes towards irreversible low productive states. Using a combination of statistical changepoint analysis and stochastic cusp modelling, here we show that Western Baltic cod is beyond such a tipping point caused by unsustainable exploitation levels that failed to account for changing environmental conditions. Furthermore, climate change stabilizes a novel and likely irreversible low productivity state of this fish stock that is not adapted to a fast warming environment. We hence argue that ignorance of non-linear resource dynamics has caused the demise of an economically and culturally important social-ecological system which calls for better adaptation of fisheries systems to climate change.

8.
PLoS One ; 12(11): e0188205, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29136658

RESUMO

Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.


Assuntos
Ecossistema , Animais , Biodiversidade , Mudança Climática , Peixes , Humanos , Biologia Marinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA