Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(2): e0248083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33635899

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0244059.].

2.
PLoS One ; 16(5): e0249147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983956

RESUMO

Vehicular emissions cause heavy metal pollution and exert negative impacts on environment and roadside vegetation. Wild plants growing along roadsides are capable of absorbing considerable amounts of heavy metals; thus, could be helpful in reducing heavy metal pollution. Therefore, current study inferred heavy metal absorbance capacity of some wild plant species growing along roadside. Four different wild plant species, i.e., Acacia nilotica L., Calotropis procera L., Ricinus communis L., and Ziziphus mauritiana L. were selected for the study. Leaf samples of these species were collected from four different sites, i.e., Control, New Lahore, Nawababad and Fatehabad. Leaf samples were analyzed to determine Pb2+, Zn2+, Ni2+, Mn2+ and Fe3+ accumulation. The A. nilotica, Z. mauritiana and C. procera accumulated significant amount of Pb at New Lahore site. Similarly, R. communis and A. nilotica accumulated higher amounts of Mn, Zn and Fe at Nawababad and New Lahore sites compared to the rest of the species. Nonetheless, Z. mauritiana accumulated higher amounts of Ni at all sites compared with the other species included in the study. Soil surface contributed towards the uptake of heavy metals in leaves; therefore, wild plant species should be grown near the roadsides to control heavy metals pollution. Results revealed that wild plants growing along roadsides accumulate significant amounts of heavy metals. Therefore, these species could be used to halt the vehicular pollution along roadsides and other polluted areas.


Assuntos
Poluição Ambiental/prevenção & controle , Metais Pesados/análise , Plantas/química , Carotenoides/metabolismo , Clorofila/metabolismo , Folhas de Planta/química , Fenômenos Fisiológicos Vegetais
3.
PLoS One ; 16(2): e0247529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630922

RESUMO

Rice (Oryza sativa L.) feeds to two-third of the global population by serving as staple food. It is the main export commodity of several countries; thus, contributes towards foreign exchange earnings. Unfortunately, average global rice yield is far below than its genetic potential. Low nitrogen (N) use efficiency (NUE) is among the major reasons for low average yield. Current study evaluated the impact of nitrogen fertilizer application methods (conventional and deep placement) on growth, yield-related traits, chlorophyll contents, photosynthesis rate, agronomic N-use efficiency (ANUE), partial factors productivity of applied N (PFP) and economic returns of two different transplanted rice varieties (Basmati-515 and Super-Basmati). Fertilizer application methods significantly affected allometry, yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns. Deep placement of N-fertilizer (DPNF) observed better allometric traits, high chlorophyll contents, photosynthesis rate, ANUE, PFP, yield attributes and economic returns compared to conventional application of N-fertilizer (CANF). Similarly, Basmati-515 had better allometric and yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns than Super-Basmati. Regarding interactions among N-fertilizer application methods and rice varieties, Basmati-515 with DPNF resulted in higher chlorophyll contents, photosynthesis rate, ANUE, PFP, allometric and yield related traits and economic returns than CANF. The lowest values of these traits were observed for Super-Basmati with no application of N-fertilizer. Both varieties had better yield and economic returns with DPNF compared to CANF. It is concluded that DPNF improved yield, ANUE and economic returns; therefore, should be opted to improve productivity of transplanted fine rice. Nonetheless, lower nitrogen doses need to be tested for DPNF to infer whether it could lower N use in rice crop.


Assuntos
Fertilizantes , Nitrogênio/farmacologia , Oryza/crescimento & desenvolvimento , Clorofila/metabolismo , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos
4.
PLoS One ; 15(12): e0244059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33373381

RESUMO

Numerous cropping systems of the world are experiencing the emergence of new weed species in response to conservation agriculture. Conyza stricta Willd. is being a newly emerging weed of barley-based cropping systems in response to conservational tillage practices. Seed germination ecology of four populations (irrigated, rainfed, abandoned and ruderal habitats) was studied in laboratory and greenhouse experiments. The presence/absence of seed dormancy was inferred first, which indicated seeds were non-dormant. Seed germination was then recorded under various photoperiods, constant and alternating day/night temperatures, and pH, salinity and osmotic potential levels. Seedling emergence was observed from various seed burial depths. Seeds of all populations proved photoblastic and required 12-hour light/dark period for germination. Seeds of all populations germinated under 5-30°C constant temperature; however, peak germination was recorded under 17.22-18.11°C. Nonetheless, the highest germination was noted under 20/15°C alternating day/night temperature. Ruderal and irrigated populations better tolerated salinity and germinated under 0-500 mM salinity. Similarly, rainfed population proved more tolerant to osmotic potential than other populations. Seeds of all populations required neutral pH for the highest germination, whereas decline was noted in germination under basic and alkaline pH. Seedling emergence was retarded for seeds buried >2 cm depth and no emergence was recorded from >4 cm depth. These results add valuable information towards our understanding of seed germination ecology of C. stricta. Seed germination ability of different populations under diverse environmental conditions suspects that the species can present severe challenges in future if not managed. Deep seed burial along with effective management of the emerging seedlings seems a pragmatic option to manage the species in cultivated fields. However, immediate management strategies are needed for rest of the habitats.


Assuntos
Conyza/crescimento & desenvolvimento , Germinação , Irrigação Agrícola , Biomassa , Salinidade , Solo/química , Temperatura , Controle de Plantas Daninhas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA