Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 676, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455220

RESUMO

BACKGROUND: Single cell transcriptome sequencing has become an increasingly valuable technology for dissecting complex biology at a resolution impossible with bulk sequencing. However, the gap between the technical expertise required to effectively work with the resultant high dimensional data and the biological expertise required to interpret the results in their biological context remains incompletely addressed by the currently available tools. RESULTS: Single Cell Explorer is a Python-based web server application we developed to enable computational and experimental scientists to iteratively and collaboratively annotate cell expression phenotypes within a user-friendly and visually appealing platform. These annotations can be modified and shared by multiple users to allow easy collaboration between computational scientists and experimental biologists. Data processing and analytic workflows can be integrated into the system using Jupyter notebooks. The application enables powerful yet accessible features such as the identification of differential gene expression patterns for user-defined cell populations and convenient annotation of cell types using marker genes or differential gene expression patterns. Users are able to produce plots without needing Python or R coding skills. As such, by making single cell RNA-seq data sharing and querying more user-friendly, the software promotes deeper understanding and innovation by research teams applying single cell transcriptomic approaches. CONCLUSIONS: Single cell explorer is a freely-available single cell transcriptomic analysis tool that enables computational and experimental biologists to collaboratively explore, annotate, and share results in a flexible software environment and a centralized database server that supports data portal functionality.


Assuntos
RNA-Seq/métodos , Análise de Célula Única/métodos , Software , Biologia Computacional/métodos , Bases de Dados Factuais , Transcriptoma , Interface Usuário-Computador , Fluxo de Trabalho
2.
PLoS One ; 16(6): e0252429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34125849

RESUMO

Applying deep learning to the field of preclinical in vivo studies is a new and exciting prospect with the potential to unlock decades worth of underutilized data. As a proof of concept, we performed a feasibility study on a colitis model treated with Sulfasalazine, a drug used in therapeutic care of inflammatory bowel disease. We aimed to evaluate the colonic mucosa improvement associated with the recovery response of the crypts, a complex histologic structure reflecting tissue homeostasis and repair in response to inflammation. Our approach requires robust image segmentation of objects of interest from whole slide images, a composite low dimensional representation of the typical or novel morphological variants of the segmented objects, and exploration of image features of significance towards biology and treatment efficacy. Both interpretable features (eg. counts, area, distance and angle) as well as statistical texture features calculated using Gray Level Co-Occurance Matrices (GLCMs), are shown to have significance in analysis. Ultimately, this analytic framework of supervised image segmentation, unsupervised learning, and feature analysis can be generally applied to preclinical data. We hope our report will inspire more efforts to utilize deep learning in preclinical in vivo studies and ultimately make the field more innovative and efficient.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA