Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(1): 86-92, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31843936

RESUMO

Mechanical deformation of amorphous solids can be described as consisting of an elastic part in which the stress increases linearly with strain, up to a yield point at which the solid either fractures or starts deforming plastically. It is well established, however, that the apparent linearity of stress with strain is actually a proxy for a much more complex behavior, with a microscopic plasticity that is reflected in diverging nonlinear elastic coefficients. Very generally, the complex structure of the energy landscape is expected to induce a singular response to small perturbations. In the athermal quasistatic regime, this response manifests itself in the form of a scale-free plastic activity. The distribution of the corresponding avalanches should reflect, according to theoretical mean-field calculations [S. Franz and S. Spigler, Phys. Rev. E 95, 022139 (2017)], the geometry of phase space in the vicinity of a typical local minimum. In this work, we characterize this distribution for simple models of glass-forming systems, and we find that its scaling is compatible with the mean-field predictions for systems above the jamming transition. These systems exhibit marginal stability, and scaling relations that hold in the stationary state are examined and confirmed in the elastic regime. By studying the respective influence of system size and age, we suggest that marginal stability is systematic in the thermodynamic limit.

2.
Phys Rev Lett ; 122(10): 105501, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932637

RESUMO

Amorphous materials have a rich relaxation spectrum, which is usually described in terms of a hierarchy of relaxation mechanisms. In this work, we investigate the local dynamic modulus spectra in a model glass just above the glass transition temperature by performing a mechanical spectroscopy analysis with molecular dynamics simulations. We find that the spectra, at the local as well as on the global scale, can be well described by the Cole-Davidson formula in the frequency range explored with simulations. Surprisingly, the Cole-Davidson stretching exponent does not change with the size of the local region that is probed. The local relaxation time displays a broad distribution, as expected based on dynamic heterogeneity concepts, but the stretching is obtained independently of this distribution. We find that the size dependence of the local relaxation time and moduli can be well explained by the elastic shoving model.

3.
J Chem Phys ; 145(10): 104503, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27634267

RESUMO

A ternary metallic glass-forming liquid is found to be not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities including the high order dynamic correlation length, and static structure are still well described by thermodynamic scaling with the same scaling exponent γ. This may indicate that the metallic liquid could be treated as a single-parameter liquid. As an intrinsic material constant stemming from the fundamental interatomic interactions, γ is theoretically predicted from the thermodynamic fluctuations of the potential energy and the virial. Although γ is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between γ and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glassformers. These findings may shed light on how to understand metallic glass formation from the fundamental interatomic interactions.

4.
Sci Adv ; 8(33): eabn3623, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35977009

RESUMO

Glasses have markedly different stability around their glass transition temperature (Tg), and metallic glasses (MGs) are conventionally regarded as metastable compared to other glasses such as silicate glass or amber. Here, we show an aging experiment on a Ce-based MG around its Tg (~0.85Tg) for more than 17 years. We find that the MG with strong fragility could transform into kinetic and thermodynamic hyperstable state after the long-term room temperature aging and exhibits strong resistance against crystallization. The achieved hyperstable state is closer to the ideal glass state compared with that of other MGs and similar to that of the million-year-aged amber, which is attributed to its strong fragility and strong resistance against nucleation. It is also observed through the asymmetrical approaching experiment that the hyperaged Ce-based MG can reach equilibrium liquid state below Tg without crystallization, which supports the idea that nucleation only occurs after the completion of enthalpy relaxation.

5.
Sci Adv ; 5(11): eaax7256, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31803833

RESUMO

Design of bulk metallic glasses (BMGs) with excellent properties has been a long-sought goal in materials science and engineering. The grand challenge has been scaling up the size and improving the properties of metallic glasses of technological importance. In this work, we demonstrate a facile, flexible route to synthesize BMGs and metallic glass-glass composites out of metallic-glass ribbons. By fully activating atomic-scale stress relaxation within an ultrathin surface layer under ultrasonic vibrations, we accelerate the formation of atomic bonding between ribbons at a temperature far below the glass transition point. In principle, our approach overcomes the size and compositional limitations facing traditional methods, leading to the rapid bonding of metallic glasses of distinct physical properties without causing crystallization. The outcome of our current research opens up a window not only to synthesize BMGs of extended compositions, but also toward the discovery of multifunctional glass-glass composites, which have never been reported before.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA