Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pestic Biochem Physiol ; 172: 104768, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518055

RESUMO

The melon aphid, Aphis gossypii, is an important pest of vegetables. Insecticide resistance in A. gossypii has increased due to the frequent use of insecticides. We studied the levels and mechanisms of A. gossypii resistance to imidacloprid, acetamiprid and lambda-cyhalothrin here. The resistance levels of the three insecticides in 20 populations of A. gossypii varied. When compared to the susceptible strain (Lab-SS), there were two moderate resistance (MR) populations and nine low resistance (LR) populations to imidacloprid, respectively, two MR populations and two LR populations to acetamiprid, respectively, and, five MR populations and two LR populations to λ-cyhalothrin, respectively. Gene mutation detection in the MR level populations showed arginine to threonine substitution (R81T) in three populations and lysine to glutamine substitution (K264E) in the nicotinic acetylcholine receptor (nAChR) ß1 subunit in one population, respectively. No valine to isoleucine substitution (V62I) was found in the nAChR ß1 subunit in any of the tested populations. The leucine to phenylalanine substitution (L1014F) in sodium channel α subunit was found in five MR populations. The relative expression of the CYP6CY13 gene was significantly upregulated in the Daiyue and Shenxian populations. The CYP6CY14 gene was significantly upregulated in Daiyue, Dongchangfu, Shenxian, Mengyin and Anqiu populations. The CYP6CY19 gene was significantly upregulated in the Dongchangfu and Mengyin populations. The relative expressions of the esterase E4 or FE4 genes were significantly upregulated in most of the MR populations. These results provide insight into the current insecticide resistance of A. gossypii and may contribute to more effective resistance management strategies.


Assuntos
Afídeos , Cucurbitaceae , Inseticidas , Animais , Afídeos/genética , China , Resistência a Inseticidas/genética , Inseticidas/toxicidade
2.
J Insect Sci ; 20(4)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32620012

RESUMO

The diamondback moth (Plutella xylostella, DBM) is an important pest of cruciferous vegetables. The use of chlorantraniliprole has been essential in the management of the DBM. However, in many countries and areas, DBM has become highly resistant to chlorantraniliprole. Three different DBM strains, susceptible (S), chlorantraniliprole-selected (Rc), and field-collected (Rb) resistant strains/populations were studied for the role of phenoloxidase in resistance development to the insecticide. By assaying the activity of phenoloxidase (PO) in the three different DBM strains, the results showed that the PO activity in the Rc strain was increased significantly compared with the S strain. The synergistic effects of quercetin showed that the resistant ratio (RR) of the QRc larvae to chlorantraniliprole was decreased from 423.95 to 316.42-fold compared with the Rc larvae. Further studies demonstrated that the transcriptional and translational expression levels of PxPPO1 (P. xylostella prophenoloxidase-1 gene) and PxPPO2 (P. xylostella prophenoloxidase-2 gene) were increased to varying degrees compared with the S strain, such as the transcriptional expression levels of PxPPO2 were 24.02-fold that of the S strain. The responses of phenoloxidase were significantly different in chlorantraniliprole-resistant DBM.


Assuntos
Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Monofenol Mono-Oxigenase/genética , Mariposas/enzimologia , ortoaminobenzoatos/farmacologia , Animais , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Monofenol Mono-Oxigenase/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/genética , Mariposas/crescimento & desenvolvimento
3.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829164

RESUMO

The southern root-knot nematode (RKN), Meloidogyne incognita, causes significant damage to vegetable production and is a major problem in greenhouse tomatoes. The effect of a combination of fluopyram and abamectin, at a mass ratio of 1:5, was studied for RKN control. Pot trials showed that fluopyram, abamectin, and their combination at three dosages increased the height, stem diameter, root fresh weight, shoot fresh weight, and the root length of tomato plants. The RKN control efficacy of the 1:5 combination at 450 g a.i./ha was 74.06% at 30 days after transplanting (DAT), and the control efficacy of the combination at 337.5 and 450 g a.i./ha differed significantly from those of other treatments at 60 DAT. The root-galling index (RGI) control efficacy of the combination at 450 g a.i./ha and of fluopyram (41.7% SC) only at 450 g a.i./ha were better than the control efficacies of other treatments, and these two treatments significantly increased root activity. Field trial results showed that the soil nematode control efficacy was similar to that of the pot trials at 30 and 60 DAT. The RGI control efficacy of the combination at 337.5 and 450 g a.i./ha and of fluopyram (41.7% SC) only at 450 g a.i./ha differed significantly from those of the two other treatments. The tomato yields of the 1:5 combination at 450 g a.i./ha were increased by 24.07 and 23.22% compared to the control in field trials during two successive years. The combination of fluopyram and abamectin provides good nematode measure, and it can increase tomato yields. It provides an effective solution for the integrated management of southern RKN.

4.
Metab Eng ; 55: 120-130, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31271774

RESUMO

Rhodococcus opacus PD630 metabolizes aromatic substrates and naturally produces branched-chain lipids, which are advantageous traits for lignin valorization. To provide insights into its lignocellulose hydrolysate utilization, we performed 13C-pathway tracing, 13C-pulse-tracing, transcriptional profiling, biomass composition analysis, and metabolite profiling in conjunction with 13C-metabolic flux analysis (13C-MFA) of phenol metabolism. We found that 1) phenol is metabolized mainly through the ortho-cleavage pathway; 2) phenol utilization requires a highly active TCA cycle; 3) NADPH is generated mainly via NADPH-dependent isocitrate dehydrogenase; 4) active cataplerotic fluxes increase plasticity in the TCA cycle; and 5) gluconeogenesis occurs partially through the reversed Entner-Doudoroff pathway (EDP). We also found that phenol-fed R. opacus PD630 generally has lower sugar phosphate concentrations (e.g., fructose 1,6-bisphosphatase) compared to metabolite pools in 13C-glucose-fed Escherichia coli (set as internal standards), while its TCA metabolites (e.g., malate, succinate, and α-ketoglutarate) accumulate intracellularly with measurable succinate secretion. In addition, we found that phenol utilization was inhibited by benzoate, while catabolite repressions by other tested carbon substrates (e.g., glucose and acetate) were absent in R. opacus PD630. Three adaptively-evolved strains display very different growth rates when fed with phenol as a sole carbon source, but they maintain a conserved flux network. These findings improve our understanding of R. opacus' metabolism for future lignin valorization.


Assuntos
Proteínas de Bactérias , Evolução Molecular Direcionada , Redes e Vias Metabólicas , Fenol/metabolismo , Rhodococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Biologia de Sistemas
5.
Nano Lett ; 17(1): 104-109, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936773

RESUMO

We report the synthesis of a highly active, supported nanostructured metal nanoparticle catalyst with an ultrathin porous shell and gaps between the metal nanoparticles and the shell for size-selective reactions. The size-selectivity of the catalysts could be realized through the porous shell. The gaps were able to reduce catalytic activity loss due to the contact areas between the shell and the catalytic sites. Evaluations of the activity and selectivity of the catalysts were made by catalytic hydrogenation of n-hexene versus cis-cyclooctene. Further verification of the high catalytic activity of the nanostructured catalysts was by oxidation of carbon monoxide.

6.
Biotechnol Biofuels ; 12: 192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404385

RESUMO

The current extraction and use of fossil fuels has been linked to extensive negative health and environmental outcomes. Lignocellulosic biomass-derived biofuels and bioproducts are being actively considered as renewable alternatives to the fuels, chemicals, and materials produced from fossil fuels. A major challenge limiting large-scale, economic deployment of second-generation biorefineries is the insufficient product yield, diversity, and value that current conversion technologies can extract from lignocellulose, in particular from the underutilized lignin fraction. Rhodococcus opacus PD630 is an oleaginous gram-positive bacterium with innate catabolic pathways and tolerance mechanisms for the inhibitory aromatic compounds found in depolymerized lignin, as well as native or engineered pathways for hexose and pentose sugars found in the carbohydrate fractions of biomass. As a result, R. opacus holds potential as a biological chassis for the conversion of lignocellulosic biomass into biodiesel precursors and other value-added products. This review begins by examining the important role that lignin utilization will play in the future of biorefineries and by providing a concise survey of the current lignin conversion technologies. The genetic machinery and capabilities of R. opacus that allow the bacterium to tolerate and metabolize aromatic compounds and depolymerized lignin are also discussed, along with a synopsis of the genetic toolbox and synthetic biology methods now available for engineering this organism. Finally, we summarize the different feedstocks that R. opacus has been demonstrated to consume, and the high-value products that it has been shown to produce. Engineered R. opacus will enable lignin valorization over the coming years, leading to cost-effective conversion of lignocellulose into fuels, chemicals, and materials.

7.
Chem Commun (Camb) ; 49(86): 10067-9, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23949157

RESUMO

A novel nanostructured catalyst with an ultra-thin porous shell obtained from the thermal decomposition of an aluminium alkoxide film deposited by molecular layer deposition for size-selective reactions was developed. The molecular sieving capability of the porous metal oxide films was verified by examining the liquid-phase hydrogenation of n-hexene versus cis-cyclooctene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA