Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCI Insight ; 9(14)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885308

RESUMO

Parasympathetic dysfunction after chronic myocardial infarction (MI) is known to predispose ventricular tachyarrhythmias (ventricular tachycardia/ventricular fibrillation [VT/VF]). VT/VF after MI is more common in males than females. The mechanisms underlying the decreased vagal tone and the associated sex difference in the occurrence of VT/VF after MI remain elusive. In this study, using optogenetic approaches, we found that responses of glutamatergic vagal afferent neurons were impaired following chronic MI in male mice, leading to reduced reflex efferent parasympathetic function. Molecular analyses of vagal ganglia demonstrated reduced glutamate levels, accompanied by decreased mitochondrial function and impaired redox status in infarcted males versus sham animals. Interestingly, infarcted females demonstrated reduced vagal sensory impairment, associated with greater vagal ganglia glutamate levels and decreased vagal mitochondrial dysfunction and oxidative stress compared with infarcted males. Treatment with 17ß-estradiol mitigated this pathological remodeling and improved vagal neurotransmission in infarcted male mice. These data suggest that a decrease in efferent vagal tone following MI results from reduced glutamatergic afferent vagal signaling that may be due to impaired redox homeostasis in the vagal ganglia, which subsequently leads to pathological remodeling in a sex-dependent manner. Importantly, estrogen prevents pathological remodeling and improves parasympathetic function following MI.


Assuntos
Estradiol , Ácido Glutâmico , Infarto do Miocárdio , Transmissão Sináptica , Nervo Vago , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Masculino , Feminino , Camundongos , Estradiol/farmacologia , Estradiol/metabolismo , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Nervo Vago/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Fatores Sexuais , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL
2.
Front Cardiovasc Med ; 9: 959815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277776

RESUMO

Significant cardiorespiratory coordination is required to maintain physiological function in health and disease. Sensory neuronal "cross-talk" between the heart and the lungs is required for synchronous regulation of normal cardiopulmonary function and is most likely mediated by the convergence of sensory neural pathways present in the autonomic ganglia. Using neurotracer approaches with appropriate negative control experiments in a mouse model, presence of cardiorespiratory neurons in the vagal (nodose) ganglia are demonstrated. Furthermore, we found that convergent neurons represent nearly 50% of all cardiac neurons and approximately 35% of all respiratory neurons. The current findings demonstrate a pre-existing neuronal substrate linking cardiorespiratory neurotransmission in the vagal ganglia, and a potentially important link for cardiopulmonary cross-sensitization, which may play an important role in the observed manifestations of cardiopulmonary diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA