Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Technol Biotechnol ; 62(1): 35-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601970

RESUMO

Research background: There is considerable diversity in newly developed pummelo × sweet orange citrus hybrids. Most hybrids showed lower peel thickness and high juice yield but there is a lack of information on fruit quality parameters and molecular characterization. Therefore, the aim of the current study is to determine the content of antioxidants and properties of the fresh juice of 24 new pummelo × sweet orange citrus hybrids (Citrus maxima [Burm. f.] Osbeck × Citrus sinensis [L.] Osbeck) and the parental genotypes along with molecular characteristics determined using acidity specific markers. Experimental approach: The correlation and estimate of inheritance of the fruit juice properties: ascorbic acid, total phenol, total flavonoid, total antioxidant, total soluble solid and sugar contents, pH, titratable acidity, along with sensory evaluation was performed. Molecular characterization of these hybrids was carried out using de novo generated acidity specific simple sequence repeat (SSR) markers. Results and conclusions: The main constituents of the fruit juice of pummelo × sweet orange hybrids were observed in the range of w(ascorbic acid)=40.00-58.13 mg/100 g, total phenols expressed as gallic acid equivalents w(GAE)=40.67-107.33 mg/100 g, total antioxidants expressed as Trolox equivalents b(Trolox)=2.03-5.49 µmol/g, total flavonoids expressed as quercetin equivalents w(QE)=23.67-59.33 mg/100 g, along with other properties: total soluble solids=7.33-11.33 %, w(total sugar)=2.10-5.76 %, w(reducing sugar)=1.69-2.78 %, w(non-reducing sugar)=0.39-3.17 % and titratable acidity 1.00-2.11 %. The above parameters differed significantly in the fruit juice of the evaluated pummelo × sweet orange hybrids. Considering these parameters, the hybrids SCSH 17-9, SCSH 13-13, SCSH 11-15 and SCSH 3-15 had superior antioxidant properties in terms of these parameters. A higher heritability (≥80 %) was also observed for all juice properties. Molecular characterization of pummelo × sweet orange hybrids showed that >50 % of the hybrids were grouped with medium acidity parents. Both molecular and biochemical parameter-based clustering showed that interspecific hybrids exhibit transgressive segregation with increased antioxidants that help alleviate the health problems. Novelty and scientific contribution: These newly developed pummelo × sweet orange citrus hybrids are a valuable source of high-quality antioxidants for a healthy diet. The identification of trait markers that enable selection at the seedling stage is of great benefit to citrus breeders, as the characteristic features of a mature tree are not yet visible at the juvenile stage.

2.
PLoS One ; 18(5): e0284910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37134101

RESUMO

Most of the popular scion varieties of mango possess alternate/irregular bearing. There are many external and internal factors assigned, among them carbohydrate reserves, and nutrient content plays important roles in the floral induction process in many crop species. In addition to that rootstock can alter the carbohydrate reserve and nutrient acquisition of scion varieties in fruit crops. The present investigation was carried out to understand the effect of rootstocks on the physiochemical traits of leaf, and bud and nutrient content in regular and alternate bearing varieties of mango. The rootstock "Kurukkan" promoted starch content in leaves of both alternate bearing varieties 'Dashehari' (5.62 mg/g) and regular 'Amrapali' (5.49 mg/g) and encouraged higher protein content (6.71 mg/g) and C/N ratio (37.94) in buds of alternate bearing 'Dashehari'. While Olour rootstock upregulated the reducing sugar in leaves of 'Amrapali' (43.56 mg/g) and promoted K (1.34%) and B (78.58 ppm) content in reproductive buds of 'Dashehari'. Stomatal density in 'Dashehari' scion variety was found higher on Olour rootstock (700.40/mm 2), while the rootstock fails to modify stomatal density in the scion variety regular bearer 'Amrapali'. Further, a total of 30 carbohydrate metabolism-specific primers were designed and validated in 15 scion/rootstock combinations. A total of 33 alleles were amplified among carbohydrate metabolism-specific markers, which varied from 2 to 3 alleles with a mean of 2.53 per locus. Maximum and minimum PIC value was found for NMSPS10, and NMTPS9 primers (0.58). Cluster analysis revealed that scion grafted on Kurukkan rootstock clustered together except 'Pusa Arunima' on Olour rootstock. Our analysis revealed that Fe is the key component that is commonly expressed in both leaf and bud. Although Stomatal density (SD) and Intercellular CO2 Concentration (Ci) are more specific to leaf and Fe, B, and total sugar (TS) are abundant in buds. Based on the results it can be inferred that the physiochemical and nutrient responses of mango scion varieties are manipulated by the rootstock, hence, the scion-rootstock combination can be an important consideration in mango for selecting suitable rootstock for alternate/irregular bearer varieties.


Assuntos
Mangifera , Mangifera/genética , Metabolismo dos Carboidratos , Carboidratos , Nutrientes , Açúcares
3.
Plants (Basel) ; 12(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38068614

RESUMO

The assessment of the optimum harvesting stage is a prerequisite to evaluating the performance of new citrus genotypes. The intrinsic and extrinsic fruit quality traits of citrus fruits change throughout their developmental process; therefore, to ensure the highest quality, the fruit must be harvested at an appropriate stage of maturity. The biochemical changes in terms of total soluble solids (TSS), titratable acidity (TA), TSS/TA ratio, BrimA (Brix minus acidity), and ascorbic acid, in addition to the organoleptic acceptability of 16 new interspecific citrus hybrids, were evaluated in New Delhi (India) during the H1-H8 harvesting stage at 15-day intervals to standardize the optimum harvesting stage. The TA and ascorbic acid content were at a maximum level during the early harvesting stage and declined with time, reaching the minimum level in the last harvesting stage. The TSS, TSS/TA ratio, and BrimA values were found to have an increasing trend up to the last stage in most of the hybrids. The juice content shows an inclining trend during the initial harvesting observations, followed by stable juice content and then a decline. The BrimA was found to be a better predictor for consumer acceptability compared to the traditional maturity index TSS/TA ratio and, thus, harvesting maturity. Specific TSS, TA, and BrimA values, in addition to the juice percentage and ascorbic acid content, corresponding to the highest hedonic score, were judged as the optimum harvesting stage indicators for an individual hybrid genotype. Among the interspecific hybrids, SCSH-9-10/12, SCSH-11-15/12, and SCSH-17-19/13 were found to be superior, having better juice acceptability organoleptic scores (≥6.0) and higher juice content (≥40%). Principal component analysis based on fruit physico-chemical traits could be able to distinguish the optimum maturity stage in all of the citrus genotypes.

4.
Front Plant Sci ; 13: 1022167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578327

RESUMO

Low-temperature stress (LTS) drastically affects vegetative and reproductive growth in fruit crops leading to a gross reduction in the yield and loss in product quality. Among the fruit crops, temperate fruits, during the period of evolution, have developed the mechanism of tolerance, i.e., adaptive capability to chilling and freezing when exposed to LTS. However, tropical and sub-tropical fruit crops are most vulnerable to LTS. As a result, fruit crops respond to LTS by inducing the expression of LTS related genes, which is for climatic acclimatization. The activation of the stress-responsive gene leads to changes in physiological and biochemical mechanisms such as photosynthesis, chlorophyll biosynthesis, respiration, membrane composition changes, alteration in protein synthesis, increased antioxidant activity, altered levels of metabolites, and signaling pathways that enhance their tolerance/resistance and alleviate the damage caused due to LTS and chilling injury. The gene induction mechanism has been investigated extensively in the model crop Arabidopsis and several winter kinds of cereal. The ICE1 (inducer of C-repeat binding factor expression 1) and the CBF (C-repeat binding factor) transcriptional cascade are involved in transcriptional control. The functions of various CBFs and aquaporin genes were well studied in crop plants and their role in multiple stresses including cold stresses is deciphered. In addition, tissue nutrients and plant growth regulators like ABA, ethylene, jasmonic acid etc., also play a significant role in alleviating the LTS and chilling injury in fruit crops. However, these physiological, biochemical and molecular understanding of LTS tolerance/resistance are restricted to few of the temperate and tropical fruit crops. Therefore, a better understanding of cold tolerance's underlying physio-biochemical and molecular components in fruit crops is required under open and simulated LTS. The understanding of LTS tolerance/resistance mechanism will lay the foundation for tailoring the novel fruit genotypes for successful crop production under erratic weather conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA