Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 550, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824516

RESUMO

BACKGROUND: Salinity is a significant abiotic stress that affects plants from germination through all growth stages. This study was aimed to determine the morpho-physiological and genetic variations in BC1F2, BC2F1 and F3 generations resulting from the cross combination WH1105 × Kharchia 65. RESULTS: A significant reduction in germination percentage was observed under salt stress in BC1F2 and F3 seeds. Correlation, heritability in the broad sense, phenotypic coefficient of variability (PCV) and genotypic coefficient of variability (GCV) were measured for all traits. The presence of both Nax1 and Nax2 loci was confirmed in twenty-nine plants using the marker-assisted selection technique. Genetic relationships among the populations were assessed using twenty-four polymorphic SSR markers. CONCLUSION: Cluster analysis along with two and three-dimensional PCA scaling (Principal Component Analysis) revealed the distinct nature of WH 1105 and Kharchia 65. Six plants closer to the recurrent parent (WH1105) selected through this study can serve as valuable genetic material for salt-tolerant wheat improvement programs.


Assuntos
Repetições de Microssatélites , Tolerância ao Sal , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Repetições de Microssatélites/genética , Tolerância ao Sal/genética , Melhoramento Vegetal/métodos , Fenótipo , Germinação/genética , Genótipo , Cruzamentos Genéticos
2.
Small ; : e2311064, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396219

RESUMO

Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.

3.
Arch Environ Contam Toxicol ; 86(4): 393-409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38806840

RESUMO

This study investigated the concentrations, seasonal variations, sources, and human health risks associated with exposure to heavy elements (As, Al, Pb, Cr, Mn, Cu, Zn, and Ni) of PM2.5 at an urban location of Delhi (28° 38' N, 77° 10' E; 218 m amsl), India, from January 2013 to December 2021. The average mass concentration of PM2.5 throughout the study period was estimated as 127 ± 77 µg m-3, which is exceeding the National Ambient Air Quality Standards (NAAQS) limit (annual: 40 µg m-3; 24 h: 60 µg m-3). The seasonal mass concentrations of PM2.5 exhibited at the order of post-monsoon (192 ± 110 µgm-3) > winter (158 ± 70 µgm-3) > summer (92 ± 44 µgm-3) and > monsoon (67 ± 32 µgm-3). The heavy elements, Al (1.19 µg m-3), Zn (0.49 µg m-3), Pb (0.43 µg m-3), Cr (0.21 µg m-3), Cu (0.21 µg m-3), Mn (0.07 µg m-3), and Ni (0.14 µg m-3) exhibited varying concentrations in PM2.5, with the highest levels observed in the post-monsoon season, followed by winter, summer, and monsoon seasons. Six primary sources throughout the study period, contributing to PM2.5 were identified by positive matrix factorization (PMF), such as dust (paved/crustal/soil dust: 29.9%), vehicular emissions (17.2%), biomass burning (15.4%), combustion (14%), industrial emissions (14.2%), and Br-rich sources (9.2%). Health risk assessments, including hazard quotient (HQ), hazard index (HI), and carcinogenic risk (CR), were computed based on heavy elements concentrations in PM2.5. Elevated HQ values for Cr and Mn linked with adverse health impacts in both adults and children. High carcinogenic risk values were observed for Cr in both adults and children during the winter and post-monsoon seasons, as well as in adults during the summer and monsoon seasons. The combined HI value exceeding one suggests appreciable non-carcinogenic risks associated with the examined elements. The findings of this study provide valuable insights into the behaviour and risk mitigation of heavy elements in PM2.5, contributing to the understanding of air quality and public health in the urban environment of Delhi.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Estações do Ano , Oligoelementos , Índia , Material Particulado/análise , Poluentes Atmosféricos/análise , Medição de Risco , Humanos , Oligoelementos/análise , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise , Metais Pesados/análise , Exposição Ambiental/análise
4.
Int J Phytoremediation ; 26(4): 524-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37641540

RESUMO

Mercury (Hg) pollution has seriously threatened the crop productivity and food security. In the present research, experiments were conducted to assess the influence of nanoscale sulfur/sulfur nanoparticles and the corresponding bulk and ionic sulfur forms on the growth and Hg accumulation of oilseed rape seedlings grown on Hg-contaminated soil, as well as the transformation of soil Hg fractions. The results showed a significant reduction in fresh biomass for seedlings grown on 80-200 mg/kg Hg-polluted soil after 30 days. At 120 mg/kg Hg treatment, 100-300 mg/kg sulfur nanoparticles (SNPs) application counteracted Hg toxicity more effectively compared to the corresponding bulk sulfur particles (BSPs) and ionic sulfur (sulfate) treatments. The seedlings treated with 120 mg/kg Hg + 300 mg/kg SNPs gained 54.2 and 56.9% more shoot and root biomass, respectively, compared to those treated with Hg alone. Meanwhile, 300 mg/kg SNPs application decreased Hg accumulation by 18.9 and 76.5% in shoots and roots, respectively, relative to Hg alone treatment.SNPs treatment caused more Hg to be blocked in the soil and accumulating significantly less Hg in plants as compared to other S forms. The chemical fractions of Hg in the soil were subsequently investigated, and the solubility of Hg was significantly decreased by applying SNPs to the soil. Especially 200-300 mg/kg SNPs treatments caused the ratio of the soluble/exchangeable and the specifically absorbed fraction to be the lowest, accounting for 1.95-4.13% of the total Hg of soil. These findings suggest that adding SNPs to Hg-contaminated soils could be an effective measure for immobilizing soluble Hg and decreasing the Hg concentration in the edible parts of crops. The results of the current study hold promise for the practical application of SNPs to Hg-contaminated farmland for better yields and simultaneously increasing the food safety.


The novelty of this study is the selection of oilseed rape and nanoscale sulfur (NS) or sulfur nanoparticles (SNPs) as nontoxic nanomaterial to counteract the Hg toxicity and accumulation. Oilseed rape was selected due to its wide adaptability to various environmental conditions and the high-value oil for human consumption and biofuels production. These advantages make oilseed rape a highly valuable crop for various applications. NS was selected due to its reported ability to limit the uptake of heavy metals in oilseed rape, rice, and wheat along with other crops and subsequently restrict the toxicity of heavy metals in these plants and improve food safety. In this study, we evaluated the growth, Hg accumulation, and the resulting toxicity in oilseed rape grown on Hg-contaminated soil, with or without amendments with NS. The outcomes from this study provided evidence of the significant potential of NS in preventing Hg bioaccumulation and improving crop yields in oilseed rape. This provides opportunity to use NS as an ideal non-GMO approach to limit toxic metals in crops.


Assuntos
Brassica napus , Mercúrio , Poluentes do Solo , Plântula/química , Biodegradação Ambiental , Solo , Enxofre , Poluentes do Solo/análise , Cádmio
5.
Int J Phytoremediation ; : 1-11, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597454

RESUMO

In the present study, experiments were conducted to assess the influence of nanoscale sulfur in the microbial community structure of metallophytes in Hg-contaminated rhizosphere soil for planting rapeseed. The results showed that the richness and diversity of the rhizobacteria community decreased significantly under Hg stress, but increased slightly after SNPs addition, with a reduction in the loss of Hg-sensitive microorganisms. Moreover, all changes in the relative abundances of the top ten phyla influenced by Hg treatment were reverted when subjected to Hg + SNPs treatment, except for Myxococcota and Bacteroidota. Similarly, the top five genera, whose relative abundance decreased the most under Hg alone compared to CK, increased by 19.05%-54.66% under Hg + SNPs treatment compared with Hg alone. Furthermore, the relative abundance of Sphingomonas, as one of the dominant genera for both CK and Hg + SNPs treatment, was actively correlated with plant growth. Rhizobacteria, like Pedobacter and Massilia, were significantly decreased under Hg + SNPs and were positively linked to Hg accumulation in plants. This study suggested that SNPs could create a healthier soil microecological environment by reversing the effect of Hg on the relative abundance of microorganisms, thereby assisting microorganisms to remediate heavy metal-contaminated soil and reduce the stress of heavy metals on plants.


In this manuscript, we first comprehensively investigated the changes in the rhizosphere microbial community structure of metallophytes in Hg-contaminated soil with SNPs addition, as well as the relationship between soil microbiology and plant resistance to Hg stress. Our results demonstrated that SNPs exhibit a significant advantage in improving rhizosphere microecology by increasing the abundance of beneficial rhizobacteria, thereby alleviating heavy metal toxicity, and promoting plant growth. This study is the first study describing the response of soil microorganisms coexposed to heavy metals and SNPs, providing valuable information for the potential use of SNPs to assist phytoremediation of toxic metal pollution and its impact on soil microbial communities.

6.
Environ Monit Assess ; 196(2): 163, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231424

RESUMO

The present study frames the physico-chemical characteristics and the source apportionment of PM10 over National Capital Region (NCR) of India using the receptor model's Positive Matrix Factorization (PMF) and Principal Momponent Mnalysis/Absolute Principal Component Score-Multilinear Regression (PCA/APCS-MLR). The annual average mass concentration of PM10 over the urban site of Faridabad, IGDTUW-Delhi and CSIR-NPL of NCR-Delhi were observed to be 195 ± 121, 275 ± 141 and 209 ± 81 µg m-3, respectively. Carbonaceous species (organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC)), elemental constituents (Al, Ti, Na, Mg, Cr, Mn, Fe, Cu, Zn, Br, Ba, Mo Pb) and water-soluble ionic components (F-, Cl-, SO42-, NO3-, NH4+, Na+, K+, Mg2+, Ca2+) of PM10 were entrenched to the receptor models to comprehend the possible sources of PM10. The PMF assorted sources over Faridabad were soil dust (SD 15%), industrial emission (IE 14%), vehicular emission (VE 19%), secondary aerosol (SA 23%) and sodium magnesium salt (SMS 17%). For IGDTUW-Delhi, the sources were SD (16%), VE (19%), SMS (18%), IE (11%), SA (27%) and VE + IE (9%). Emission sources like SD (24%), IE (8%), SMS (20%), VE + IE (12%), VE (15%) and SA + BB (21%) were extracted over CSIR-NPL, New Delhi, which are quite obvious towards the sites. PCA/APCS-MLR quantified the similar sources with varied percentage contribution. Additionally, catalogue the Conditional Bivariate Probability Function (CBPF) for directionality of the local source regions and morphology as spherical, flocculent and irregular were imaged using a Field Emission-Scanning Electron Microscope (FE-SEM).


Assuntos
Carbono , Monitoramento Ambiental , Índia , Poeira , Água
7.
Environ Monit Assess ; 195(11): 1297, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828346

RESUMO

For the last few decades, air pollution in developing country like India is increasing, and it is a matter of huge concern due to its associated human health impacts. In this region, the burgeoning population, escalating urbanization and industrialization, has been cited as the major reason for such a high air pollution. The present study was carried out for health risk assessment of aerosol particles (PM10 and PM2.5) and its associated heavy metals of an agriculture farm site at Indian Agricultural Research Institute (IARI) considered to be green urban area in Delhi, India. The concentrations of both PM10 and PM2.5 varied significantly from 136 to 177 µg/m3 and 56 to 162 µg/m3, respectively at the site. In the present case, the highest PM10 and PM2.5 levels were reported in January, followed by December. The levels of ambient PM10 and PM2.5 are influenced by wind prevailing meteorology. These levels of PM10 and PM2.5 are more than the permissible limits of WHO guidelines of 15 and 5 µg/m3, respectively, thereby leading to high aerosol loadings specifically in winters. The PM concentration of the atmosphere was found to be negatively correlated with temperature during the sampling period. The concentrations of surface ozone O3 and NOx in the present study were observed to be high in February and March, respectively. The increasing air pollution in the city of Delhi poses a great risk to the human health, as the particulate matter loaded with heavy metals can enter humans via different pathways, viz., ingestion, inhalation, and absorption through skin. The mean hazard index for metals (Zn, Pb, Cd, As, Cr, and Ni) was observed within the acceptable limit (HI < 1), thereby indicating negligible non-carcinogenic effects to residing population. The carcinogenic risk assessment was conducted for Cd, Pb, and As only, as the concentrations for other metals were found to be quite low. The carcinogenic risk values were also within the limits of USEPA standards, indicating no carcinogenic risks to the health of children and adults residing near the site. This information about the PM pollution at the agricultural site and health risk assessment will serve as a baseline data in assessment of human health impacts due to air pollution at the local scale and can be used for development of mitigation strategies for tackling air pollution.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Criança , Adulto , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Cádmio , Chumbo , Material Particulado/análise , Metais Pesados/análise , Medição de Risco , Aerossóis , Índia
8.
Environ Sci Technol ; 56(11): 7275-7287, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35467339

RESUMO

The association between daily all-cause mortality and short-term fine particulate matter (PM2.5) exposure is well established in the literature. However, association between acute exposure to PM2.5 chemical species and mortality is not well known, especially in developing countries like India. Here we examined associations between mortality and acute exposure to PM2.5 mass concentration and their 15 chemical components using data from 2013 to 2016 in megacity Delhi using a semiparametric quasi-Poisson regression model, adjusting for mean temperature, relative humidity, and long-term time trend as the major potential confounders. Mortality estimates were further checked for effect modification by sex, age group, and season. The subspecies of NO3-, NH4NO3, Cr, NH4+, EC, and OC showed a higher mortality impact than the total PM2.5 mass. Males were at higher risk from NO3-, SO42-, and their NH4+ compounds along with carcinogen Cr, whereas female group was at higher risk from EC and OC. Among all age groups, the elderly above 65 years were the most vulnerable group prone to mortality effects from maximum species. The major mortality risk from all hazardous species arose from their winter exposures. Our study provides the first evidence of association between acute exposure to PM2.5 chemical species and mortality anywhere in India and recommends similar studies in other regions so that sectoral mitigation emitting the most toxic species can be prioritized to maximize the health benefits.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Feminino , Humanos , Índia/epidemiologia , Material Particulado/análise , Estações do Ano , Temperatura
9.
J Environ Manage ; 303: 114049, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839957

RESUMO

The study examines the variation in organic carbon (OC) and elemental carbon (EC) in PM2.5 concentration at an urban location of Indo-Gangetic Plains (IGP) to understand the impact of seasonality and regional crop residue burning activities. Seasonal cluster analysis of backward air masses and concentration-weighted trajectory (CWT) analysis was performed to identify seasonal transport pathways and potential source regions of carbonaceous aerosols. The mean PM2.5 level during the study period was 57 ± 41.6 µgm-3 (5.0-187.3 µgm-3), whereas OC and EC concentration ranges from 2.8 µgm-3 to 28.2 µgm-3 and 1.3 µgm-3 to 15.5 µgm-3 with a mean value of 8.4 ± 5.5 µgm-3 and 5.1 ± 3.3 µgm-3 respectively. The highest mean PM2.5 concentration was found during the winter season (111.3 ± 25.5 µgm-3), which rises 3.6 times compared to the monsoon season. OC and EC also follow a similar trend having the highest levels in winter. Total carbonaceous aerosols contribute ∼38% of PM2.5 composition. The positive linear trend between OC and EC identified the key sources. HYSPLIT cluster analysis of backward air mass trajectories revealed that during the post-monsoon, winters, pre-monsoon, and monsoon, 71%, 81%, 60%, and 43% of air masses originate within the 500 km radius of IGP. CWT analysis and abundance of OC in post-monsoon and winters season establish a linkage between regional solid-biomass fuel use and crop residue burning activities, including meteorology. Moreover, the low annual average OC/EC ratio (1.75) indicates the overall influence of vehicular emissions. The current dataset of carbonaceous aerosols collated with other Indian studies could be used to validate the global aerosol models on a regional scale and aid in evidence-based air pollution reduction strategies.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
10.
Stroke ; 52(10): e574-e580, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34167324

RESUMO

Background and Purpose: Very few large scale multicentric stroke clinical trials have been done in India. The Indian Council of Medical Research funded INSTRuCT (Indian Stroke Clinical Trial Network) as a task force project with the objectives to establish a state-of-the-art stroke clinical trial network and to conduct pharmacological and nonpharmacological stroke clinical trials relevant to the nation and globally. The purpose of the article is to enumerate the structure of multicentric stroke network, with emphasis on its scope, challenges and expectations in India. Methods: Multiple expert group meetings were conducted by Indian Council of Medical Research to understand the scope of network to perform stroke clinical trials in the country. Established stroke centers with annual volume of 200 patients with stroke with prior experience of conducting clinical trials were included. Central coordinating center, standard operating procedures, data and safety monitoring board were formed. Discussion: In first phase, 2 trials were initiated namely, SPRINT (Secondary Prevention by Structured Semi-Interactive Stroke Prevention Package in India) and Ayurveda treatment in the rehabilitation of patients with ischemic stroke in India (RESTORE [Rehabilitation of Ischemic stroke Patients in India: A Randomized controlled trial]). In second phase, 4 trials have been approved. SPRINT trial was the first to be initiated. SPRINT trial randomized first patient on April 28, 2018; recruited 3048 patients with an average of 128.5 per month so far. The first follow-up was completed on May 27, 2019. RESTORE trial randomized first patient on May 22, 2019; recruited 49 patients with an average of 3.7 per month so far. The first follow-up was completed on August 30, 2019. Conclusions: In next 5 years, INSTRuCT will be able to complete high-quality large scale stroke trials which are relevant globally. REGISTRATION: URL: http://www.ctri.nic.in/; Unique Identifier: CTRI/2017/05/008507.


Assuntos
Ensaios Clínicos como Assunto/normas , Estudos Multicêntricos como Assunto/normas , Acidente Vascular Cerebral/terapia , Hospitais , Humanos , Índia , Políticas , Publicações , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , Acidente Vascular Cerebral/tratamento farmacológico , Reabilitação do Acidente Vascular Cerebral
11.
J Am Chem Soc ; 143(9): 3407-3415, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629851

RESUMO

A bowl-shaped calix[4]arene with its exciting host-guest chemistry is a versatile supramolecular building block for the synthesis of distinct coordination cages or metal-organic frameworks. However, its utility in the synthesis of crystalline covalent organic frameworks (COFs) remains challenging, presumably due to its conformational flexibility. Here, we report the synthesis of a periodic 2D extended organic network of calix[4]arenes joined by a linear benzidine linker via dynamic imine bonds. By tuning the interaction among neighboring calixarene units through varying the concentration in the reaction mixture, we show the selective formation of interpenetrated (CX4-BD-1) and non-interpenetrated (CX4-BD-2) frameworks. The cone-shaped calixarene moiety in the structural backbone allows for the interweaving of two neighboring layers in CX4-BD-1, making it a unique example of interpenetrated 2D layers. Due to the high negative surface charge from calixarene units, both COFs have shown high performance in charge-selective dye removal and an exceptional selectivity for cationic dyes irrespective of their molecular size. The charge distribution of the COFs and the resulting selectivity for the cationic dyes were further investigated using computational methods.

12.
J Med Virol ; 93(9): 5339-5349, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33913527

RESUMO

The present study was conducted from July 1, 2020 to September 25, 2020 in a dedicated coronavirus disease 2019 (COVID-19) hospital in Delhi, India to provide evidence for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in atmospheric air and surfaces of the hospital wards. Swabs from hospital surfaces (patient's bed, ward floor, and nursing stations area) and suspended particulate matter in ambient air were collected by a portable air sampler from the medicine ward, intensive care unit, and emergency ward admitting COVID-19 patients. By performing reverse-transcriptase polymerase chain reaction (RT-PCR) for E-gene and RdRp gene, SARS-CoV-2 virus was detected from hospital surfaces and particulate matters from the ambient air of various wards collected at 1 and 3-m distance from active COVID-19 patients. The presence of the virus in the air beyond a 1-m distance from the patients and surfaces of the hospital indicates that the SARS-CoV-2 virus has the potential to be transmitted by airborne and surface routes from COVID-19 patients to health-care workers working in COVID-19 dedicated hospital. This warrants that precautions against airborne and surface transmission of COVID-19 in the community should be taken when markets, industries, educational institutions, and so on, reopen for normal activities.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/epidemiologia , COVID-19/transmissão , Fômites/virologia , RNA Viral/genética , SARS-CoV-2/genética , Ar/análise , COVID-19/prevenção & controle , Proteínas do Envelope de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Hospitais , Humanos , Índia/epidemiologia , Unidades de Terapia Intensiva , Material Particulado/análise
13.
Environ Sci Technol ; 55(20): 13490-13503, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34570468

RESUMO

Rice is known to accumulate arsenic (As) in its grains, posing serious health concerns for billions of people globally. We studied the effect of nanoscale sulfur (NS) on rice seedlings and mature plants under As stress. NS application caused a 40% increase in seedling biomass and a 26% increase in seed yield of mature plants compared to untreated control plants. AsIII exposure caused severe toxicity to rice; however, coexposure of plants to AsIII and NS alleviated As toxicity, and growth was significantly improved. Rice seedlings treated with AsIII + NS produced 159 and 248% more shoot and root biomass, respectively, compared to plants exposed to AsIII alone. Further, AsIII + NS-treated seedlings accumulated 32 and 11% less As in root and shoot tissues, respectively, than the AsIII-alone treatment. Mature plants treated with AsIII + NS produced 76, 110, and 108% more dry shoot biomass, seed number, and seed yield, respectively, and accumulated 69, 38, 18, and 54% less total As in the root, shoot, flag leaves, and grains, respectively, compared to AsIII-alone-treated plants. A similar trend was observed in seedlings treated with AsV and NS. The ability of sulfur (S) to alleviate As toxicity and accumulation is clearly size dependent as NS could effectively reduce bioavailability and accumulation of As in rice via modulating the gene expression activity of As transport, S assimilatory, and glutathione synthesis pathways to facilitate AsIII detoxification. These results have significant environmental implications as NS application in agriculture has the potential to decrease As in the food chain and simultaneously enable crops to grow and produce higher yields on marginal and contaminated lands.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/toxicidade , Humanos , Raízes de Plantas/química , Plântula , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Enxofre
14.
J Am Chem Soc ; 142(44): 18782-18794, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33090806

RESUMO

Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.


Assuntos
Compostos Férricos/química , Iminas/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Embrião não Mamífero/efeitos dos fármacos , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Hipertermia Induzida , Imageamento por Ressonância Magnética , Polilisina/química , Porosidade , Temperatura , Peixe-Zebra/crescimento & desenvolvimento
15.
J Am Chem Soc ; 141(48): 19078-19087, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31656067

RESUMO

Light-operated materials have gained significant attention for their potential technological importance. To achieve molecular motion within extended networks, stimuli-responsive units require free space. The majority of the so far reported 2D-extended organic networks with responsive moieties restrict their freedom of motion on account of their connectivity providing constrained free volume for efficient molecular motion. We report here a light-responsive azobenzene-functionalized covalent organic framework (TTA-AzoDFP) designed in a way that the pendent azobenzene groups are pointing toward the pore channels with sufficient free volume necessary for the unencumbered dynamic motion to occur inside the pores of the covalent organic framework (COF) and undergo a reversible trans-cis photoisomerization upon light irradiation. The resulting hydrophobic COF was used for the storage of rhodamine B and its controlled release in solution by the mechanical motion of the azobenzene units triggered by ultraviolet-light irradiation. The TTA-AzoDFP displayed unprecedented photoregulated fluorescence emission behavior upon UV-light irradiation. Size, emission, and degree of hydrophobicity with respect to trans-cis-trans photoisomerization could be reversibly controlled by alternating UV- and visible-light exposure. The results reported here demonstrate once again the importance of the careful design of the linkers not only to allow the incorporation of molecular switches within the chemical structure of COFs but also to provide the required free space for not hindering their motion. The results demonstrate that responsive COFs could be suitable platforms for delivery systems that can be controlled by external stimuli.

16.
Arch Environ Contam Toxicol ; 76(1): 114-128, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30310951

RESUMO

The present work is the ensuing part of the study on spatial and temporal variations in chemical characteristics of PM10 (particulate matter with aerodynamic diameter ≤ 10 µm) over Indo Gangetic Plain (IGP) of India. It focuses on the apportionment of PM10 sources with the application of different receptor models, i.e., principal component analysis with absolute principal component scores (PCA-APCS), UNMIX, and positive matrix factorization (PMF) on the same chemical species of PM10. The main objective of this study is to perform the comparative analysis of the models, obtained mutually validated outputs and more robust results. The average PM10 concentration during January 2011 to December 2011 at Delhi, Varanasi, and Kolkata were 202.3 ± 74.3, 206.2 ± 77.4, and 171.5 ± 38.5 µg m-3, respectively. The results provided by the three models revealed quite similar source profile for all the sampling regions, with some disaccords in number of sources as well as their percent contributions. The PMF analysis resolved seven individual sources in Delhi [soil dust (SD), vehicular emissions (VE), secondary aerosols (SA), biomass burning (BB), sodium and magnesium salt (SMS), fossil fuel combustion, and industrial emissions (IE)], Varanasi [SD, VE, SA, BB, SMS, coal combustion, and IE], and Kolkata [secondary sulfate (Ssulf), secondary nitrate, SD, VE, BB, SMS, IE]. However, PCA-APCS and UNMIX models identified less number of sources (besides mixed type sources) than PMF for all the sampling sites. All models identified that VE, SA, BB, and SD were the dominant contributors of PM10 mass concentration over the IGP region of India.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Emissões de Veículos/análise , Aerossóis , Atmosfera , Cidades , Poeira/análise , Índia , Tamanho da Partícula , Análise de Componente Principal , Clima Tropical
17.
Chemistry ; 24(34): 8648-8655, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29665187

RESUMO

Owing to their chemical and thermal stabilities, high uptake capacities, and easy recyclability, covalent organic polymers (COPs) have shown promise as pollutant sponges. Herein, we describe the use of diazo coupling to synthesize two cationic COPs, COP1++ and COP2++ , that incorporate a viologen-based molecular switch and an organic macrocycle, calix[4]arene. The COPs form nanosheets that have height profiles of 6.00 nm and 8.00 nm, respectively, based on AFM measurements. The sheets remain morphologically intact upon one- or two-electron reductions of their viologen subunits. MD simulations of the COPs containing dicationic viologens indicate that the calix[4]arenes adopt a partial cone conformation and that, in height, the individual 2D polymer layers are 5.48 Šin COP1++ and 5.65 Šin COP2++ , which, together with the AFM measurements, suggests that the nanosheets are composed of 11 and 14 layers, respectively. Whether their viologens are in dicationic, radical cationic, or neutral form, the COPs exhibit high affinity for iodine, reaching up to 200 % mass increase when exposed to iodine vapor at 70 °C, which makes the materials among the best-performing nanosheets for iodine capture reported in the literature. In addition, the COPs effectively remove Congo red from solution in the pH range of 2-10, reaching nearly 100 % removal within 15 minutes at acidic pH.

18.
J Am Chem Soc ; 139(16): 5793-5800, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28383910

RESUMO

We report electric field values relevant to the reactant and transition states of designed Kemp eliminases KE07 and KE70 and their improved variants from laboratory directed evolution (LDE), using atomistic simulations with the AMOEBA polarizable force field. We find that the catalytic base residue contributes the most to the electric field stabilization of the transition state of the LDE variants of the KE07 and KE70 enzymes, whereas the electric fields of the remainder of the enzyme and solvent disfavor the catalytic reaction in both cases. By contrast, we show that the electrostatic environment plays a large and stabilizing role for the naturally occurring enzyme ketosteroid isomerase (KSI). These results suggest that LDE is ultimately a limited strategy for improving de novo enzymes since it is largely restricted to optimization of chemical positioning in the active site, thus yielding a ∼3 order magnitude improvement over the uncatalyzed reaction, which we suggest may be an absolute upper bound estimate based on LDE applied to comparable de novo Kemp eliminases and other enzymes like KSI. Instead de novo enzymatic reactions could more productively benefit from optimization of the electrostatics of the protein scaffold in early stages of the computational design, utilizing electric field optimization as guidance.


Assuntos
Liases/metabolismo , Liases/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Termodinâmica
19.
J Am Chem Soc ; 139(28): 9558-9565, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28506068

RESUMO

Morphology influences the functionality of covalent organic networks and determines potential applications. Here, we report for the first time the use of Zincke reaction to fabricate, under either solvothermal or microwave conditions, a viologen-linked covalent organic network in the form of hollow particles or nanosheets. The synthesized materials are stable in acidic, neutral, and basic aqueous solutions. Under basic conditions, the neutral network assumes radical cationic character without decomposing or changing structure. Solvent polarity and heating method determine product morphology. Depending upon solvent polarity, the resulting polymeric network forms either uniform self-templated hollow spheres (HS) or hollow tubes (HT). The spheres develop via an inside-out Ostwald ripening mechanism. Interestingly, microwave conditions and certain solvent polarities result in the formation of a robust covalent organic gel framework (COGF) that is organized in nanosheets stacked several layers thick. In the gel phase, the nanosheets are crystalline and form honeycomb lattices. The use of the Zincke reaction has previously been limited to the synthesis of small viologen molecules and conjugated viologen oligomers. Its application here expands the repertoire of tools for the fabrication of covalent organic networks (which are usually prepared by dynamic covalent chemistry) and for the synthesis of viologen-based materials. All three materials-HT, HS, and COGF-serve as efficient adsorbents of iodine due to the presence of the cationic viologen linker and, in the cases of HT and HS, permanent porosity.

20.
Neurol India ; 65(3): 527-531, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28488614

RESUMO

BACKGROUND: Reports on therapeutic plasma exchange (TPE) with the standard hemodialysis equipment are scarce, particularly from developing countries. MATERIALS AND METHODS: A retrospective analysis of safety and efficacy of membrane-based TPE with a standard hemodialysis equipment for the treatment of severe Guillain-Barré syndrome (GBS) was conducted. RESULTS: A total of 120 TPE sessions were performed in 31 GBS patients over a period of 5½ years. Each patient underwent a mean of 3.8 ± 1.5 TPE sessions. One (3.2%) patient died. Thirty (96.8%) patients survived and recovered. At 2 weeks, there was a significant improvement in the grade of power in both the upper and lower extremities (P = 0.001) and a significant decrease in the GBS disability grade (P = 0.001). Twenty four (77.4%) patients were able to walk unaided. Complications observed were: hypotension in 12 (10%), accelerated hypertension in 3 (2.5%), chills and rigors in 5 (4.2%), bleeding in 5 (4.2%), and filter clotting in 6 (5%) sessions. One patient experienced an anaphylactoid reaction and 1 patient survived a cardiorespiratory arrest. Two patients developed aspiration pneumonia and 1 patient developed catheter site infection. CONCLUSIONS: Membrane-based TPE can be conveniently delivered with the standard hemodialysis equipment. It is a safe, effective, and comparatively less expensive treatment option for GBS.


Assuntos
Síndrome de Guillain-Barré/terapia , Plasmaferese/métodos , Resultado do Tratamento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Síndrome de Guillain-Barré/patologia , Humanos , Índia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Estudos Retrospectivos , Centros de Atenção Terciária , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA