Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 151(5): 1083-96, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178125

RESUMO

The origins and developmental mechanisms of coronary arteries are incompletely understood. We show here by fate mapping, clonal analysis, and immunohistochemistry that endocardial cells generate the endothelium of coronary arteries. Dye tracking, live imaging, and tissue transplantation also revealed that ventricular endocardial cells are not terminally differentiated; instead, they are angiogenic and form coronary endothelial networks. Myocardial Vegf-a or endocardial Vegfr-2 deletion inhibited coronary angiogenesis and arterial formation by ventricular endocardial cells. In contrast, lineage and knockout studies showed that endocardial cells make a small contribution to the coronary veins, the formation of which is independent of myocardial-to-endocardial Vegf signaling. Thus, contrary to the current view of a common source for the coronary vessels, our findings indicate that the coronary arteries and veins have distinct origins and are formed by different mechanisms. This information may help develop better cell therapies for coronary artery disease.


Assuntos
Vasos Coronários/embriologia , Células Endoteliais/citologia , Miocárdio/citologia , Neovascularização Fisiológica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Diferenciação Celular , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Camundongos , Miocárdio/metabolismo , Fatores de Transcrição NFATC/metabolismo
2.
J Neurol Neurosurg Psychiatry ; 95(4): 356-359, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833041

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is associated with the tauopathies Alzheimer's disease and chronic traumatic encephalopathy. Advanced immunoassays show significant elevations in plasma total tau (t-tau) early post-TBI, but concentrations subsequently normalise rapidly. Tau phosphorylated at serine-181 (p-tau181) is a well-validated Alzheimer's disease marker that could potentially seed progressive neurodegeneration. We tested whether post-traumatic p-tau181 concentrations are elevated and relate to progressive brain atrophy. METHODS: Plasma p-tau181 and other post-traumatic biomarkers, including total-tau (t-tau), neurofilament light (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP), were assessed after moderate-to-severe TBI in the BIO-AX-TBI cohort (first sample mean 2.7 days, second sample within 10 days, then 6 weeks, 6 months and 12 months, n=42). Brain atrophy rates were assessed in aligned serial MRI (n=40). Concentrations were compared patients with and without Alzheimer's disease, with healthy controls. RESULTS: Plasma p-tau181 concentrations were significantly raised in patients with Alzheimer's disease but not after TBI, where concentrations were non-elevated, and remained stable over one year. P-tau181 after TBI was not predictive of brain atrophy rates in either grey or white matter. In contrast, substantial trauma-associated elevations in t-tau, NfL, GFAP and UCH-L1 were seen, with concentrations of NfL and t-tau predictive of brain atrophy rates. CONCLUSIONS: Plasma p-tau181 is not significantly elevated during the first year after moderate-to-severe TBI and levels do not relate to neuroimaging measures of neurodegeneration.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Encefalopatia Traumática Crônica , Humanos , Biomarcadores , Proteínas tau , Imageamento por Ressonância Magnética , Ubiquitina Tiolesterase , Atrofia , Peptídeos beta-Amiloides
3.
Brain ; 146(7): 3063-3078, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36546554

RESUMO

Sports related head injuries can cause transient neurological events including loss of consciousness and dystonic posturing. However, it is unknown why head impacts that appear similar produce distinct neurological effects. The biomechanical effect of impacts can be estimated using computational models of strain within the brain. Here, we investigate the strain and strain rates produced by professional American football impacts that led to loss of consciousness, posturing or no neurological signs. We reviewed 1280 National Football League American football games and selected cases where the team's medical personnel made a diagnosis of concussion. Videos were then analysed for signs of neurological events. We identified 20 head impacts that showed clear video signs of loss of consciousness and 21 showing clear abnormal posturing. Forty-one control impacts were selected where there was no observable evidence of neurological signs, resulting in 82 videos of impacts for analysis. Video analysis was used to guide physical reconstructions of these impacts, allowing us to estimate the impact kinematics. These were then used as input to a detailed 3D high-fidelity finite element model of brain injury biomechanics to estimate strain and strain rate within the brain. We tested the hypotheses that impacts producing loss of consciousness would be associated with the highest biomechanical forces, that loss of consciousness would be associated with high forces in brainstem nuclei involved in arousal and that dystonic posturing would be associated with high forces in motor regions. Impacts leading to loss of consciousness compared to controls produced higher head acceleration (linear acceleration; 81.5 g ± 39.8 versus 47.9 ± 21.4; P = 0.004, rotational acceleration; 5.9 krad/s2 ± 2.4 versus 3.5 ± 1.6; P < 0.001) and in voxel-wise analysis produced larger brain deformation in many brain regions, including parts of the brainstem and cerebellum. Dystonic posturing was also associated with higher deformation compared to controls, with brain deformation observed in cortical regions that included the motor cortex. Loss of consciousness was specifically associated with higher strain rates in brainstem regions implicated in maintenance of consciousness, including following correction for the overall severity of impact. These included brainstem nuclei including the locus coeruleus, dorsal raphé and parabrachial complex. The results show that in head impacts producing loss of consciousness, brain deformation is disproportionately seen in brainstem regions containing nuclei involved in arousal, suggesting that head impacts produce loss of consciousness through a biomechanical effect on key brainstem nuclei involved in the maintenance of consciousness.


Assuntos
Concussão Encefálica , Traumatismos Craniocerebrais , Transtornos dos Movimentos , Humanos , Estado de Consciência , Traumatismos Craniocerebrais/complicações , Concussão Encefálica/etiologia , Cabeça , Atletas , Transtornos dos Movimentos/complicações , Inconsciência , Simulação por Computador , Fenômenos Biomecânicos
4.
Cereb Cortex ; 33(3): 567-582, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35235642

RESUMO

Area OP2 in the posterior peri-sylvian cortex has been proposed to be the core human vestibular cortex. We investigated the functional anatomy of OP2 and adjacent areas (OP2+) using spatially constrained independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. Ten ICA-derived subregions were identified. OP2+ responses to vestibular and visual motion were analyzed in 17 controls and 17 right-sided vestibular neuritis patients who had previously undergone caloric and optokinetic stimulation during fMRI. In controls, a posterior part of right OP2+ showed: (i) direction-selective responses to visual motion and (ii) activation during caloric stimulation that correlated positively with perceived self-motion, and negatively with visual dependence and peak slow-phase nystagmus velocity. Patients showed abnormal OP2+ activity, with an absence of visual or caloric activation of the healthy ear and no correlations with vertigo or visual dependence-despite normal slow-phase nystagmus responses to caloric stimulation. Activity in a lateral part of right OP2+ correlated with chronic visually induced dizziness in patients. In summary, distinct functional subregions of right OP2+ show strong connectivity to other vestibular areas and a profile of caloric and visual responses, suggesting a central role for vestibular function in health and disease.


Assuntos
Percepção de Movimento , Doenças Vestibulares , Vestíbulo do Labirinto , Humanos , Estimulação Luminosa/métodos , Percepção de Movimento/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Vestíbulo do Labirinto/fisiologia , Imageamento por Ressonância Magnética/métodos
5.
Biophys J ; 122(18): 3600-3610, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36523161

RESUMO

The microtubule (MT) cytoskeleton and its dynamics play an important role in cell migration. Depletion of the microtubule-severing enzyme Fidgetin-like 2 (FL2), a regulator of MT dynamics at the leading edge of migrating cells, leads to faster and more efficient cell migration. Here we examine how siRNA knockdown of FL2 increases cell motility. Förster resonance energy transfer biosensor studies shows that FL2 knockdown decreases activation of the p21 Rho GTPase, RhoA, and its activator GEF-H1. Immunofluorescence studies reveal that GEF-H1 is sequestered by the increased MT density resulting from FL2 depletion. Activation of the Rho GTPase, Rac1, however, does not change after FL2 knockdown. Furthermore, FL2 depletion leads to an increase in focal adhesion kinase activation at the leading edge, as shown by immunofluorescence studies, but no change in actin dynamics, as shown by fluorescence recovery after photobleaching. We believe these results expand our understanding of the role of MT dynamics in cell migration and offer new insights into RhoA and Rac1 regulation.


Assuntos
Microtúbulos , Proteína rhoA de Ligação ao GTP , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Microtúbulos/metabolismo , Movimento Celular , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
6.
J Neurosci ; 42(49): 9193-9210, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36316155

RESUMO

Associative binding is key to normal memory function and is transiently disrupted during periods of post-traumatic amnesia (PTA) following traumatic brain injury (TBI). Electrophysiological abnormalities, including low-frequency activity, are common following TBI. Here, we investigate associative memory binding during PTA and test the hypothesis that misbinding is caused by pathological slowing of brain activity disrupting cortical communication. Thirty acute moderate to severe TBI patients (25 males; 5 females) and 26 healthy controls (20 males; 6 females) were tested with a precision working memory paradigm requiring the association of object and location information. Electrophysiological effects of TBI were assessed using resting-state EEG in a subsample of 17 patients and 21 controls. PTA patients showed abnormalities in working memory function and made significantly more misbinding errors than patients who were not in PTA and controls. The distribution of localization responses was abnormally biased by the locations of nontarget items for patients in PTA, suggesting a specific impairment of object and location binding. Slow-wave activity was increased following TBI. Increases in the δ-α ratio indicative of an increase in low-frequency power specifically correlated with binding impairment in working memory. Connectivity changes in TBI did not correlate with binding impairment. Working memory and electrophysiological abnormalities normalized at 6 month follow-up. These results show that patients in PTA show high rates of misbinding that are associated with a pathological shift toward lower-frequency oscillations.SIGNIFICANCE STATEMENT How do we remember what was where? The mechanism by which information (e.g., object and location) is integrated in working memory is a central question for cognitive neuroscience. Following significant head injury, many patients will experience a period of post-traumatic amnesia (PTA) during which this associative binding is disrupted. This may be because of electrophysiological changes in the brain. Using a precision working memory test and resting-state EEG, we show that PTA patients demonstrate impaired binding ability, and this is associated with a shift toward slower-frequency activity on EEG. Abnormal EEG connectivity was observed but was not specific to PTA or binding ability. These findings contribute to both our mechanistic understanding of working memory binding and PTA pathophysiology.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos Psicóticos , Masculino , Feminino , Humanos , Amnésia/etiologia , Memória de Curto Prazo , Amnésia Retrógrada , Lesões Encefálicas Traumáticas/complicações
7.
Brain ; 145(8): 2920-2934, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35798350

RESUMO

Long-term outcomes are difficult to predict after paediatric traumatic brain injury. The presence or absence of focal brain injuries often do not explain cognitive, emotional and behavioural disabilities that are common and disabling. In adults, traumatic brain injury produces progressive brain atrophy that can be accurately measured and is associated with cognitive decline. However, the effect of paediatric traumatic brain injury on brain volumes is more challenging to measure because of its interaction with normal brain development. Here we report a robust approach to the individualized estimation of brain volume following paediatric traumatic brain injury and investigate its relationship to clinical outcomes. We first used a large healthy control dataset (n > 1200, age 8-22) to describe the healthy development of white and grey matter regions through adolescence. Individual estimates of grey and white matter regional volume were then generated for a group of moderate/severe traumatic brain injury patients injured in childhood (n = 39, mean age 13.53 ± 1.76, median time since injury = 14 months, range 4-168 months) by comparing brain volumes in patients to age-matched controls. Patients were individually classified as having low or normal brain volume. Neuropsychological and neuropsychiatric outcomes were assessed using standardized testing and parent/carer assessments. Relative to head size, grey matter regions decreased in volume during normal adolescence development whereas white matter tracts increased in volume. Traumatic brain injury disrupted healthy brain development, producing reductions in both grey and white matter brain volumes after correcting for age. Of the 39 patients investigated, 11 (28%) had at least one white matter tract with reduced volume and seven (18%) at least one area of grey matter with reduced volume. Those classified as having low brain volume had slower processing speed compared to healthy controls, emotional impairments, higher levels of apathy, increased anger and learning difficulties. In contrast, the presence of focal brain injury and microbleeds were not associated with an increased risk of these clinical impairments. In summary, we show how brain volume abnormalities after paediatric traumatic brain injury can be robustly calculated from individual T1 MRI using a large normative dataset that allows the effects of healthy brain development to be controlled for. Using this approach, we show that volumetric abnormalities are common after moderate/severe traumatic brain injury in both grey and white matter regions, and are associated with higher levels of cognitive, emotional and behavioural abnormalities that are common after paediatric traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Malformações do Sistema Nervoso , Substância Branca , Adolescente , Adulto , Atrofia , Encéfalo , Criança , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Adulto Jovem
8.
Brain ; 145(8): 2742-2754, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35680425

RESUMO

Autoantibodies against the extracellular domain of the N-methyl-d-aspartate receptor (NMDAR) NR1 subunit cause a severe and common form of encephalitis. To better understand their generation, we aimed to characterize and identify human germinal centres actively participating in NMDAR-specific autoimmunization by sampling patient blood, CSF, ovarian teratoma tissue and, directly from the putative site of human CNS lymphatic drainage, cervical lymph nodes. From serum, both NR1-IgA and NR1-IgM were detected more frequently in NMDAR-antibody encephalitis patients versus controls (both P < 0.0001). Within patients, ovarian teratoma status was associated with a higher frequency of NR1-IgA positivity in serum (OR = 3.1; P < 0.0001) and CSF (OR = 3.8, P = 0.047), particularly early in disease and before ovarian teratoma resection. Consistent with this immunoglobulin class bias, ovarian teratoma samples showed intratumoral production of both NR1-IgG and NR1-IgA and, by single cell RNA sequencing, contained expanded highly-mutated IgA clones with an ovarian teratoma-restricted B cell population. Multiplex histology suggested tertiary lymphoid architectures in ovarian teratomas with dense B cell foci expressing the germinal centre marker BCL6, CD21+ follicular dendritic cells, and the NR1 subunit, alongside lymphatic vessels and high endothelial vasculature. Cultured teratoma explants and dissociated intratumoral B cells secreted NR1-IgGs in culture. Hence, ovarian teratomas showed structural and functional evidence of NR1-specific germinal centres. On exploring classical secondary lymphoid organs, B cells cultured from cervical lymph nodes of patients with NMDAR-antibody encephalitis produced NR1-IgG in 3/7 cultures, from patients with the highest serum NR1-IgG levels (P < 0.05). By contrast, NR1-IgG secretion was observed neither from cervical lymph nodes in disease controls nor in patients with adequately resected ovarian teratomas. Our multimodal evaluations provide convergent anatomical and functional evidence of NMDAR-autoantibody production from active germinal centres within both intratumoral tertiary lymphoid structures and traditional secondary lymphoid organs, the cervical lymph nodes. Furthermore, we develop a cervical lymph node sampling protocol that can be used to directly explore immune activity in health and disease at this emerging neuroimmune interface.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Vasos Linfáticos , Teratoma , Autoanticorpos , Feminino , Centro Germinativo , Humanos , Imunoglobulina A , Imunoglobulina G , Neoplasias Ovarianas , Receptores de N-Metil-D-Aspartato
9.
Alzheimers Dement ; 19(7): 3065-3077, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36696255

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) is a dementia risk factor, with Alzheimer's disease (AD) more common following injury. Patterns of neurodegeneration produced by TBI can be compared to AD and aging using volumetric MRI. METHODS: A total of 55 patients after moderate to severe TBI (median age 40), 45 with AD (median age 69), and 61 healthy volunteers underwent magnetic resonance imaging over 2 years. Atrophy patterns were compared. RESULTS: AD patients had markedly lower baseline volumes. TBI was associated with increased white matter (WM) atrophy, particularly involving corticospinal tracts and callosum, whereas AD rates were increased across white and gray matter (GM). Subcortical WM loss was shared in AD/TBI, but deep WM atrophy was TBI-specific and cortical atrophy AD-specific. Post-TBI atrophy patterns were distinct from aging, which resembled AD. DISCUSSION: Post-traumatic neurodegeneration 1.9-4.0 years (median) following moderate-severe TBI is distinct from aging/AD, predominantly involving central WM. This likely reflects distributions of axonal injury, a neurodegeneration trigger. HIGHLIGHTS: We compared patterns of brain atrophy longitudinally after moderate to severe TBI in late-onset AD and healthy aging. Patients after TBI had abnormal brain atrophy involving the corpus callosum and other WM tracts, including corticospinal tracts, in a pattern that was specific and distinct from AD and aging. This pattern is reminiscent of axonal injury following TBI, and atrophy rates were predicted by the extent of axonal injury on diffusion tensor imaging, supporting a relationship between early axonal damage and chronic neurodegeneration.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Substância Branca , Humanos , Adulto , Idoso , Imagem de Tensor de Difusão , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
10.
Nano Lett ; 22(14): 5681-5688, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35819950

RESUMO

Overcoming the challenges of patterning luminescent materials will unlock additive and more sustainable paths for the manufacturing of next-generation on-chip photonic devices. Electrohydrodynamic (EHD) inkjet printing is a promising method for deterministically placing emitters on these photonic devices. However, the use of this technique to pattern luminescent lead halide perovskite nanocrystals (NCs), notable for their defect tolerance and impressive optical and spin coherence properties, for integration with optoelectronic devices remains unexplored. In this work, we additively deposit nanoscale CsPbBr3 NC features on photonic structures via EHD inkjet printing. We perform transmission electron microscopy of EHD inkjet printed NCs to demonstrate that the NCs' structural integrity is maintained throughout the printing process. Finally, NCs are deposited with sub-micrometer control on an array of parallel silicon nitride nanophotonic cavities and demonstrate cavity-emitter coupling via photoluminescence spectroscopy. These results demonstrate EHD inkjet printing as a scalable, precise method to pattern luminescent nanomaterials for photonic applications.

11.
Blood ; 136(25): 2875-2880, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32750707

RESUMO

Management of symptoms and prevention of life-threatening hemorrhage in immune thrombocytopenia (ITP) must be balanced against adverse effects of therapies. Because current treatment guidelines based on platelet count are confounded by variable bleeding phenotypes, there is a need to identify new objective markers of disease severity for treatment stratification. In this cross-sectional prospective study of 49 patients with ITP and nadir platelet counts <30 × 109/L and 18 aged-matched healthy controls, we used susceptibility-weighted magnetic resonance imaging to detect cerebral microbleeds (CMBs) as a marker of occult hemorrhage. CMBs were detected using a semiautomated method and correlated with clinical metadata using multivariate regression analysis. No CMBs were detected in health controls. In contrast, lobar CMBs were identified in 43% (21 of 49) of patients with ITP; prevalence increased with decreasing nadir platelet count (0/4, ≥15 × 109/L; 2/9, 10-14 × 109/L; 4/11, 5-9 × 109/L; 15/25 <5 × 109/L) and was associated with longer disease duration (P = 7 × 10-6), lower nadir platelet count (P = .005), lower platelet count at time of neuroimaging (P = .029), and higher organ bleeding scores (P = .028). Mucosal and skin bleeding scores, number of previous treatments, age, and sex were not associated with CMBs. Occult cerebral microhemorrhage is common in patients with moderate to severe ITP. Strong associations with ITP duration may reflect CMB accrual over time or more refractory disease. Further longitudinal studies in children and adults will allow greater understanding of the natural history and clinical and prognostic significance of CMBs.


Assuntos
Hemorragia Cerebral , Imageamento por Ressonância Magnética , Neuroimagem , Púrpura Trombocitopênica Idiopática , Adulto , Idoso , Idoso de 80 Anos ou mais , Hemorragia Cerebral/sangue , Hemorragia Cerebral/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Estudos Prospectivos , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/diagnóstico por imagem
12.
Brain ; 144(1): 92-113, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33257929

RESUMO

Poor outcomes after traumatic brain injury (TBI) are common yet remain difficult to predict. Diffuse axonal injury is important for outcomes, but its assessment remains limited in the clinical setting. Currently, axonal injury is diagnosed based on clinical presentation, visible damage to the white matter or via surrogate markers of axonal injury such as microbleeds. These do not accurately quantify axonal injury leading to misdiagnosis in a proportion of patients. Diffusion tensor imaging provides a quantitative measure of axonal injury in vivo, with fractional anisotropy often used as a proxy for white matter damage. Diffusion imaging has been widely used in TBI but is not routinely applied clinically. This is in part because robust analysis methods to diagnose axonal injury at the individual level have not yet been developed. Here, we present a pipeline for diffusion imaging analysis designed to accurately assess the presence of axonal injury in large white matter tracts in individuals. Average fractional anisotropy is calculated from tracts selected on the basis of high test-retest reliability, good anatomical coverage and their association to cognitive and clinical impairments after TBI. We test our pipeline for common methodological issues such as the impact of varying control sample sizes, focal lesions and age-related changes to demonstrate high specificity, sensitivity and test-retest reliability. We assess 92 patients with moderate-severe TBI in the chronic phase (≥6 months post-injury), 25 patients in the subacute phase (10 days to 6 weeks post-injury) with 6-month follow-up and a large control cohort (n = 103). Evidence of axonal injury is identified in 52% of chronic and 28% of subacute patients. Those classified with axonal injury had significantly poorer cognitive and functional outcomes than those without, a difference not seen for focal lesions or microbleeds. Almost a third of patients with unremarkable standard MRIs had evidence of axonal injury, whilst 40% of patients with visible microbleeds had no diffusion evidence of axonal injury. More diffusion abnormality was seen with greater time since injury, across individuals at various chronic injury times and within individuals between subacute and 6-month scans. We provide evidence that this pipeline can be used to diagnose axonal injury in individual patients at subacute and chronic time points, and that diffusion MRI provides a sensitive and complementary measure when compared to susceptibility weighted imaging, which measures diffuse vascular injury. Guidelines for the implementation of this pipeline in a clinical setting are discussed.


Assuntos
Axônios/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Imagem de Difusão por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto , Anisotropia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
13.
Brain ; 144(1): 70-91, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33454735

RESUMO

The relationship between biomechanical forces and neuropathology is key to understanding traumatic brain injury. White matter tracts are damaged by high shear forces during impact, resulting in axonal injury, a key determinant of long-term clinical outcomes. However, the relationship between biomechanical forces and patterns of white matter injuries, associated with persistent diffusion MRI abnormalities, is poorly understood. This limits the ability to predict the severity of head injuries and the design of appropriate protection. Our previously developed human finite element model of head injury predicted the location of post-traumatic neurodegeneration. A similar rat model now allows us to experimentally test whether strain patterns calculated by the model predicts in vivo MRI and histology changes. Using a controlled cortical impact, mild and moderate injuries (1 and 2 mm) were performed. Focal and axonal injuries were quantified with volumetric and diffusion 9.4 T MRI at 2 weeks post injury. Detailed analysis of the corpus callosum was conducted using multi-shell diffusion MRI and histopathology. Microglia and astrocyte density, including process parameters, along with white matter structural integrity and neurofilament expression were determined by quantitative immunohistochemistry. Linear mixed effects regression analyses for strain and strain rate with the employed outcome measures were used to ascertain how well immediate biomechanics could explain MRI and histology changes. The spatial pattern of mechanical strain and strain rate in the injured cortex shows good agreement with the probability maps of focal lesions derived from volumetric MRI. Diffusion metrics showed abnormalities in the corpus callosum, indicating white matter changes in the segments subjected to high strain, as predicted by the model. The same segments also exhibited a severity-dependent increase in glia cell density, white matter thinning and reduced neurofilament expression. Linear mixed effects regression analyses showed that mechanical strain and strain rate were significant predictors of in vivo MRI and histology changes. Specifically, strain and strain rate respectively explained 33% and 28% of the reduction in fractional anisotropy, 51% and 29% of the change in neurofilament expression and 51% and 30% of microglia density changes. The work provides evidence that strain and strain rate in the first milliseconds after injury are important factors in determining patterns of glial and axonal injury and serve as experimental validators of our computational model of traumatic brain injury. Our results provide support for the use of this model in understanding the relationship of biomechanics and neuropathology and can guide the development of head protection systems, such as airbags and helmets.


Assuntos
Axônios/patologia , Fenômenos Biomecânicos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Modelos Neurológicos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Animais , Astrócitos/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Análise de Elementos Finitos , Masculino , Microglia/patologia , Ratos Sprague-Dawley
14.
Brain ; 144(1): 128-143, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33367536

RESUMO

Vestibular dysfunction, causing dizziness and imbalance, is a common yet poorly understood feature in patients with TBI. Damage to the inner ear, nerve, brainstem, cerebellum and cerebral hemispheres may all affect vestibular functioning, hence, a multi-level assessment-from reflex to perception-is required. In a previous report, postural instability was the commonest neurological feature in ambulating acute patients with TBI. During ward assessment, we also frequently observe a loss of vertigo sensation in patients with acute TBI, common inner ear conditions and a related vigorous vestibular-ocular reflex nystagmus, suggesting a 'vestibular agnosia'. Patients with vestibular agnosia were also more unbalanced; however, the link between vestibular agnosia and imbalance was confounded by the presence of inner ear conditions. We investigated the brain mechanisms of imbalance in acute TBI, its link with vestibular agnosia, and potential clinical impact, by prospective laboratory assessment of vestibular function, from reflex to perception, in patients with preserved peripheral vestibular function. Assessment included: vestibular reflex function, vestibular perception by participants' report of their passive yaw rotations in the dark, objective balance via posturography, subjective symptoms via questionnaires, and structural neuroimaging. We prospectively screened 918 acute admissions, assessed 146 and recruited 37. Compared to 37 matched controls, patients showed elevated vestibular-perceptual thresholds (patients 12.92°/s versus 3.87°/s) but normal vestibular-ocular reflex thresholds (patients 2.52°/s versus 1.78°/s). Patients with elevated vestibular-perceptual thresholds [3 standard deviations (SD) above controls' average], were designated as having vestibular agnosia, and displayed worse posturography than non-vestibular-agnosia patients, despite no difference in vestibular symptom scores. Only in patients with impaired postural control (3 SD above controls' mean), whole brain diffusion tensor voxel-wise analysis showed elevated mean diffusivity (and trend lower fractional anisotropy) in the inferior longitudinal fasciculus in the right temporal lobe that correlated with vestibular agnosia severity. Thus, impaired balance and vestibular agnosia are co-localized to the inferior longitudinal fasciculus in the right temporal lobe. Finally, a clinical audit showed a sevenfold reduction in clinician recognition of a common peripheral vestibular condition (benign paroxysmal positional vertigo) in acute patients with clinically apparent vestibular agnosia. That vestibular agnosia patients show worse balance, but without increased dizziness symptoms, explains why clinicians may miss treatable vestibular diagnoses in these patients. In conclusion, vestibular agnosia mediates imbalance in traumatic brain injury both directly via white matter tract damage in the right temporal lobe, and indirectly via reduced clinical recognition of common, treatable vestibular diagnoses.


Assuntos
Agnosia/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Equilíbrio Postural , Vestíbulo do Labirinto/fisiopatologia , Adolescente , Adulto , Idoso , Agnosia/etiologia , Agnosia/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Tontura/etiologia , Tontura/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reflexo de Endireitamento , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
15.
Brain ; 144(1): 114-127, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33367761

RESUMO

Memory impairment is a common, disabling effect of traumatic brain injury. In healthy individuals, successful memory encoding is associated with activation of the dorsal attention network as well as suppression of the default mode network. Here, in traumatic brain injury patients we examined whether: (i) impairments in memory encoding are associated with abnormal brain activation in these networks; (ii) whether changes in this brain activity predict subsequent memory retrieval; and (iii) whether abnormal white matter integrity underpinning functional networks is associated with impaired subsequent memory. Thirty-five patients with moderate-severe traumatic brain injury aged 23-65 years (74% males) in the post-acute/chronic phase after injury and 16 healthy control subjects underwent functional MRI during performance of an abstract image memory encoding task. Diffusion tensor imaging was used to assess structural abnormalities across patient groups compared to 28 age-matched healthy controls. Successful memory encoding across all participants was associated with activation of the dorsal attention network, the ventral visual stream and medial temporal lobes. Decreased activation was seen in the default mode network. Patients with preserved episodic memory demonstrated increased activation in areas of the dorsal attention network. Patients with impaired memory showed increased left anterior prefrontal activity. White matter microstructure underpinning connectivity between core nodes of the encoding networks was significantly reduced in patients with memory impairment. Our results show for the first time that patients with impaired episodic memory show abnormal activation of key nodes within the dorsal attention network and regions regulating default mode network activity during encoding. Successful encoding was associated with an opposite direction of signal change between patients with and without memory impairment, suggesting that memory encoding mechanisms could be fundamentally altered in this population. We demonstrate a clear relationship between functional networks activated during encoding and underlying abnormalities within the structural connectome in patients with memory impairment. We suggest that encoding failures in this group are likely due to failed control of goal-directed attentional resources.


Assuntos
Atenção/fisiologia , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Encéfalo/fisiopatologia , Transtornos da Memória/fisiopatologia , Adulto , Encéfalo/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/etiologia , Rememoração Mental/fisiologia , Pessoa de Meia-Idade , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Adulto Jovem
16.
J Am Psychiatr Nurses Assoc ; 28(5): 391-401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33190586

RESUMO

BACKGROUND: Assuring quality care is critical to the well-being and recovery of individuals receiving inpatient psychiatric treatment, yet a comprehensive map of quality inpatient care does not exist. AIMS: To isolate and describe quality elements of inpatient psychiatric treatment. METHODS: A survey queried psychiatric inpatient nursing leaders on what they considered to be critical elements of quality. The survey was emailed to 40 American Psychiatric Nurses Association members, and 39 individuals responded. In the survey, participants were asked to comment on the importance of six dimensions of quality as well as quality indicators used on their units. RESULTS: Data from this survey indicate how thought leaders conceptualized quality of inpatient care. A unifying philosophy of care was endorsed as a quality element as was structure that affords staff available time on the unit-engaging with patients. While staffing levels were viewed as important, the respondents commented on the nuances between staffing and quality. Participants endorsed the importance of involving individuals in their treatment planning as well as tapping into patients' perspectives on the treatment experience. CONCLUSIONS: The participants' responses compliment the quality literature and reinforce the need to develop a comprehensive map of quality elements. These elements interact in complex way, for instance, staffing, engagement, and teamwork is tied to the organizational structure and philosophy of care, which in turn facilitates consumer involvement in care. Thus, gauging the impact of quality on outcomes will demand consideration of the interaction of factors not just the linear relationship of one element to an outcome.


Assuntos
Recursos Humanos de Enfermagem Hospitalar , Enfermagem Psiquiátrica , Hospitalização , Humanos , Pacientes Internados/psicologia , Indicadores de Qualidade em Assistência à Saúde , Inquéritos e Questionários
17.
J Neurol Neurosurg Psychiatry ; 92(5): 519-527, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33563808

RESUMO

OBJECTIVE: To examine psychotropic and pain medication use in a population-based cohort of individuals with traumatic brain injury (TBI), and compare them with controls from similar backgrounds. METHODS: We assessed Swedish nationwide registers to include all individuals diagnosed with incident TBI between 2006 and 2012 in hospitals or specialist outpatient care. Full siblings never diagnosed with TBI acted as controls. We examined dispensed prescriptions for psychotropic and pain medications for the 12 months before and after the TBI. RESULTS: We identified 239 425 individuals with incident TBI, and 199 658 unaffected sibling controls. In the TBI cohort, 36.6% had collected at least one prescription for a psychotropic or pain medication in the 12 months before the TBI. In the 12 months after, medication use increased to 45.0%, an absolute rate increase of 8.4% (p<0.001). The largest post-TBI increases were found for opioids (from 16.3% to 21.6%, p<0.001), and non-opioid pain medications (from 20.3% to 26.6%, p<0.001). The majority of prescriptions were short-term; 20.6% of those prescribed opioids and 37.3% of those with benzodiazepines collected prescriptions for more than 6 months. Increased odds of any psychotropic or pain medication were associated with individuals before (OR: 1.62, 95% CI: 1.59 to 1.65), and after the TBI (OR: 2.30, 95% CI: 2.26 to 2.34) as compared with sibling controls, and ORs were consistently increased for all medication classes. CONCLUSION: High rates of psychotropic and pain medications after a TBI suggest that medical follow-up should be routine and review medication use.


Assuntos
Analgésicos/uso terapêutico , Lesões Encefálicas Traumáticas , Prescrições de Medicamentos/estatística & dados numéricos , Psicotrópicos/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Suécia , Adulto Jovem
18.
Brain ; 143(4): 1158-1176, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32243506

RESUMO

It is well established that chronic cognitive problems after traumatic brain injury relate to diffuse axonal injury and the consequent widespread disruption of brain connectivity. However, the pattern of diffuse axonal injury varies between patients and they have a correspondingly heterogeneous profile of cognitive deficits. This heterogeneity is poorly understood, presenting a non-trivial challenge for prognostication and treatment. Prominent amongst cognitive problems are deficits in working memory and reasoning. Previous functional MRI in controls has associated these aspects of cognition with distinct, but partially overlapping, networks of brain regions. Based on this, a logical prediction is that differences in the integrity of the white matter tracts that connect these networks should predict variability in the type and severity of cognitive deficits after traumatic brain injury. We use diffusion-weighted imaging, cognitive testing and network analyses to test this prediction. We define functionally distinct subnetworks of the structural connectome by intersecting previously published functional MRI maps of the brain regions that are activated during our working memory and reasoning tasks, with a library of the white matter tracts that connect them. We examine how graph theoretic measures within these subnetworks relate to the performance of the same tasks in a cohort of 92 moderate-severe traumatic brain injury patients. Finally, we use machine learning to determine whether cognitive performance in patients can be predicted using graph theoretic measures from each subnetwork. Principal component analysis of behavioural scores confirm that reasoning and working memory form distinct components of cognitive ability, both of which are vulnerable to traumatic brain injury. Critically, impairments in these abilities after traumatic brain injury correlate in a dissociable manner with the information-processing architecture of the subnetworks that they are associated with. This dissociation is confirmed when examining degree centrality measures of the subnetworks using a canonical correlation analysis. Notably, the dissociation is prevalent across a number of node-centric measures and is asymmetrical: disruption to the working memory subnetwork relates to both working memory and reasoning performance whereas disruption to the reasoning subnetwork relates to reasoning performance selectively. Machine learning analysis further supports this finding by demonstrating that network measures predict cognitive performance in patients in the same asymmetrical manner. These results accord with hierarchical models of working memory, where reasoning is dependent on the ability to first hold task-relevant information in working memory. We propose that this finer grained information may be useful for future applications that attempt to predict long-term outcomes or develop tailored therapies.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/fisiopatologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Adulto , Transtornos Cognitivos/fisiopatologia , Conectoma , Imagem de Tensor de Difusão , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Resolução de Problemas/fisiologia
19.
Brain ; 143(12): 3685-3698, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099608

RESUMO

Traumatic brain injury is associated with elevated rates of neurodegenerative diseases such as Alzheimer's disease and chronic traumatic encephalopathy. In experimental models, diffuse axonal injury triggers post-traumatic neurodegeneration, with axonal damage leading to Wallerian degeneration and toxic proteinopathies of amyloid and hyperphosphorylated tau. However, in humans the link between diffuse axonal injury and subsequent neurodegeneration has yet to be established. Here we test the hypothesis that the severity and location of diffuse axonal injury predicts the degree of progressive post-traumatic neurodegeneration. We investigated longitudinal changes in 55 patients in the chronic phase after moderate-severe traumatic brain injury and 19 healthy control subjects. Fractional anisotropy was calculated from diffusion tensor imaging as a measure of diffuse axonal injury. Jacobian determinant atrophy rates were calculated from serial volumetric T1 scans as a measure of measure post-traumatic neurodegeneration. We explored a range of potential predictors of longitudinal post-traumatic neurodegeneration and compared the variance in brain atrophy that they explained. Patients showed widespread evidence of diffuse axonal injury, with reductions of fractional anisotropy at baseline and follow-up in large parts of the white matter. No significant changes in fractional anisotropy over time were observed. In contrast, abnormally high rates of brain atrophy were seen in both the grey and white matter. The location and extent of diffuse axonal injury predicted the degree of brain atrophy: fractional anisotropy predicted progressive atrophy in both whole-brain and voxelwise analyses. The strongest relationships were seen in central white matter tracts, including the body of the corpus callosum, which are most commonly affected by diffuse axonal injury. Diffuse axonal injury predicted substantially more variability in white matter atrophy than other putative clinical or imaging measures, including baseline brain volume, age, clinical measures of injury severity and microbleeds (>50% for fractional anisotropy versus <5% for other measures). Grey matter atrophy was not predicted by diffuse axonal injury at baseline. In summary, diffusion MRI measures of diffuse axonal injury are a strong predictor of post-traumatic neurodegeneration. This supports a causal link between axonal injury and the progressive neurodegeneration that is commonly seen after moderate/severe traumatic brain injury but has been of uncertain aetiology. The assessment of diffuse axonal injury with diffusion MRI is likely to improve prognostic accuracy and help identify those at greatest neurodegenerative risk for inclusion in clinical treatment trials.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Lesão Axonal Difusa/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Adulto , Anisotropia , Atrofia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Lesão Axonal Difusa/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/diagnóstico por imagem , Testes Neuropsicológicos , Valor Preditivo dos Testes , Desempenho Psicomotor , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
20.
Int J Geriatr Psychiatry ; 36(11): 1597-1639, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34043836

RESUMO

OBJECTIVES: In response to a commissioned research update on dementia during the COVID-19 pandemic, a UK-based working group, comprising dementia researchers from a range of fields and disciplines, aimed to describe the impact of the pandemic on dementia wellbeing and identify priorities for future research. METHODS: We supplemented a rapid literature search (including unpublished, non-peer reviewed and ongoing studies/reports) on dementia wellbeing in the context of COVID-19 with expert group members' consensus about future research needs. From this we generated potential research questions the group judged to be relevant that were not covered by the existing literature. RESULTS: Themes emerged from 141 studies within the six domains of the NHS England COVID-19 Dementia Wellbeing Pathway: Preventing Well, Diagnosing Well, Treating Well, Supporting Well, Living Well and Dying Well. We describe current research findings and knowledge gaps relating to the impact on people affected by dementia (individuals with a diagnosis, their carers and social contacts, health and social care practitioners and volunteers), services, research activities and organisations. Broad themes included the potential benefits and risks of new models of working including remote healthcare, the need for population-representative longitudinal studies to monitor longer-term impacts, and the importance of reporting dementia-related findings within broader health and care studies. CONCLUSIONS: The COVID-19 pandemic has had a disproportionately negative impact on people affected by dementia. Researchers and funding organisations have responded rapidly to try to understand the impacts. Future research should highlight and resolve outstanding questions to develop evidence-based measures to improve the quality of life of people affected by dementia.


Assuntos
COVID-19 , Demência , Consenso , Demência/epidemiologia , Humanos , Pandemias , Qualidade de Vida , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA