Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Transfusion ; 54(11): 2892-900, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24806146

RESUMO

BACKGROUND: Prevention of acute hemolytic transfusion reactions is a worldwide concern. The objective of this study was to develop a simple rat model of complement-mediated acute intravascular hemolysis. STUDY DESIGN AND METHODS: Human AB red blood cells (RBCs) were incubated with complement-sufficient or complement-deficient Wistar rat serum (WRS) in the presence and absence of human RBC antibody in vitro to elucidate the mechanism of hemolysis. To study the role of complement in acute intravascular hemolysis in vivo, Wistar rats were treated either with or without cobra venom factor (CVF) to deplete complement activity. Human AB RBCs were then injected into both groups of rats, followed by serial blood draws up to 2 hours. Venous blood clearance and lysis of transfused RBCs at each time point were measured by flow cytometry and spectrophotometry. RBC sequestration was determined in the liver, spleen, and kidney by immunohistochemistry. RESULTS: In vitro incubation of human RBCs with WRS demonstrated that RBC lysis was mediated via the classical complement pathway and that hemolysis was antibody dependent. Transfusion of human RBCs into rats showed significantly less hemolysis in the CVF group versus untreated group. RBC sequestration in the spleen and liver 2 hours posttransfusion were not quantitatively different between the two groups. CONCLUSIONS: Given the much higher degree of similarity for rat and human complement compared to mice, this simple rat model is ideal for testing novel inhibitors of classical pathway activation for the prevention and treatment of acute intravascular hemolysis.


Assuntos
Proteínas do Sistema Complemento , Transfusão de Eritrócitos/efeitos adversos , Eritrócitos/metabolismo , Hemólise , Fígado/metabolismo , Baço/metabolismo , Doença Aguda , Animais , Inativadores do Complemento/farmacologia , Via Clássica do Complemento/efeitos dos fármacos , Modelos Animais de Doenças , Venenos Elapídicos/farmacologia , Eritrócitos/patologia , Humanos , Fígado/patologia , Camundongos , Ratos , Ratos Wistar , Especificidade da Espécie , Baço/patologia
2.
Pathogens ; 13(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38251333

RESUMO

Staphylococcus aureus is a significant human pathogen with a formidable propensity for antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-associated settings. Although often grouped by methicillin resistance, both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains are known to cause significant pathologies and injuries. Virulence factors and growing resistance to antibiotics play major roles in the pathogenicity of community-associated strains. In our study, we examined the genetic variability and acquired antibiograms of 122 S. aureus clinical isolates from SSTI, blood, and urinary tract infections originating from pediatric patients within the southeast region of Virginia, USA. We identified a suite of clinically relevant virulence factors and evaluated their prevalence within these isolates. Five genes (clfA, spA, sbi, scpA, and vwb) with immune-evasive functions were identified in all isolates. MRSA isolates had a greater propensity to be resistant to more antibiotics as well as significantly more likely to carry several virulence factors compared to MSSA strains. Further, the carriage of various genes was found to vary significantly based on the infection type (SSTI, blood, urine).

3.
PLoS One ; 17(3): e0265774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35324969

RESUMO

Staphylococcus aureus employs a multitude of immune-evasive tactics to circumvent host defenses including the complement system, a component of innate immunity central to controlling bacterial infections. With antibiotic resistance becoming increasingly common, there is a dire need for novel therapies. Previously, we have shown that S. aureus binds the complement regulator factor H (FH) via surface protein SdrE to inhibit complement. To address the need for novel therapeutics and take advantage of the FH:SdrE interaction, we examined the effect of a fusion protein comprised of the SdrE-interacting domain of FH coupled with IgG Fc on complement-mediated opsonophagocytosis and bacterial killing of community associated methicillin-resistant S. aureus. S. aureus bound significantly more FH-Fc compared to Fc-control proteins and FH-Fc competed with serum FH for S. aureus binding. FH-Fc treatment increased C3-fragment opsonization of S. aureus for both C3b and iC3b, and boosted generation of the anaphylatoxin C5a. In 5 and 10% serum, FH-Fc treatment significantly increased S. aureus killing by polymorphonuclear cells. This anti-staphylococcal effect was evident in 75% (3/4) of clinical isolates tested. This study demonstrates that FH-Fc fusion proteins have the potential to mitigate the protective effects of bound serum FH rendering S. aureus more vulnerable to the host immune system. Thus, we report the promise of virulence-factor-targeted fusion-proteins as an avenue for prospective anti-staphylococcal therapeutic development.


Assuntos
Fator H do Complemento , Staphylococcus aureus Resistente à Meticilina , Complemento C3b/metabolismo , Proteínas do Sistema Complemento/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Opsonização , Ligação Proteica , Staphylococcus aureus/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-31962186

RESUMO

Stress reactivity and glucocorticoid signaling alterations are reported in mouse models of autism spectrum disorder (ASD). BALB/c mice display decreased locomotor activity in the presence of stimulus mice and spend less time exploring enclosed stimulus mice; this mouse strain has been validated as an ASD model. VU0410120, a glycine type 1 transporter (GlyT1) inhibitor, improved sociability in BALB/c mice, consistent with data that NMDA Receptor (NMDAR) activation regulates sociability, and the endogenous tone of NMDAR-mediated neurotransmission is altered in this strain. Effects of a prosocial dose of VU0410120 on conspecific-provoked immobility, and relationships between conspecific-provoked immobility and corticosterone response were explored. VU0410120-treated BALB/c mice showed reduced immobility in the presence of conspecifics and increased the conspecific-provoked corticosterone response. However, the intensity of conspecific-provoked immobility in VU0410120-treated BALB/c mice did not differ as a function of corticosterone response. Expression profiles of 88 glucocorticoid signaling associated genes within frontal cortex and hippocampus were examined. BALB/c mice resistant to prosocial effects of VU0410120 had increased mRNA expression of Ddit4, a negative regulator of mTOR signaling. Dysregulated mTOR signaling activity is a convergent finding in several monogenic syndromic forms of ASD. Prosocial effects of VU0410120 in the BALB/c strain may be related to regulatory influences of NMDAR-activation on mTOR signaling activity. Because corticosterone response is a marker of social stress, the current data suggest that the stressfulness of a social encounter alone may not be the sole determinant of increased immobility in BALB/c mice; this strain may also display an element of social disinterest.


Assuntos
Córtex Cerebral/metabolismo , Corticosterona/sangue , Glucocorticoides/biossíntese , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Hipocampo/metabolismo , Imobilização/fisiologia , Animais , Benzamidas/farmacologia , Córtex Cerebral/efeitos dos fármacos , Expressão Gênica , Glucocorticoides/genética , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo
5.
PLoS One ; 10(7): e0132446, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26196285

RESUMO

The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Complemento C1q/imunologia , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Humanos , Injeções , Lectinas/imunologia , Macaca fascicularis , Masculino , Lectina de Ligação a Manose/imunologia , Camundongos , Dados de Sequência Molecular , Peptídeos/administração & dosagem , Peptídeos/sangue , Ratos , Ratos Wistar , Ovinos , Ficolinas
6.
Front Immunol ; 5: 406, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25202312

RESUMO

The classical pathway of complement plays multiple physiological roles including modulating immunological effectors initiated by adaptive immune responses and an essential homeostatic role in the clearance of damaged self-antigens. However, dysregulated classical pathway activation is associated with antibody-initiated, inflammatory diseases processes like cold agglutinin disease, acute intravascular hemolytic transfusion reaction (AIHTR), and acute/hyperacute transplantation rejection. To date, only one putative classical pathway inhibitor, C1 esterase inhibitor (C1-INH), is currently commercially available and its only approved indication is for replacement treatment in hereditary angioedema, which is predominantly a kinin pathway disease. Given the variety of disease conditions in which the classical pathway is implicated, development of therapeutics that specifically inhibits complement initiation represents a major unmet medical need. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement. In vitro studies have demonstrated that these peptide inhibitors of complement C1 (PIC1) bind to the collagen-like region of the initiator molecule of the classical pathway, C1q. PIC1 binding to C1q blocks activation of the associated serine proteases (C1s-C1r-C1r-C1s) and subsequent downstream complement activation. Rational design optimization of PIC1 has resulted in the generation of a highly potent derivative of 15 amino acids. PIC1 inhibits classical pathway mediated complement activation in ABO incompatibility in vitro and inhibiting classical pathway activation in vivo in rats. This review will focus on the pre-clinical development of PIC1 and discuss its potential as a therapeutic in antibody-mediated classical pathway disease, specifically AIHTR.

7.
Mol Immunol ; 53(1-2): 132-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22906481

RESUMO

Previous experiments from our laboratories have identified peptides derived from the human astrovirus coat protein (CP) that bind C1q and mannose binding lectin (MBL) inhibiting activation of the classical and lectin pathways of complement, respectively. The purpose of this study was to evaluate the function of these coat protein peptides (CPPs) in an in vitro model of complement-mediated disease (ABO incompatibility), preliminarily assess their in vivo complement suppression profile and develop more highly potent derivatives of these molecules. E23A, a 30 amino acid CPP derivative previously demonstrated to inhibit classical pathway activation was able to dose-dependently inhibit lysis of AB erythrocytes treated with mismatched human O serum. Additionally, when injected into rats, E23A inhibited the animals' serum from lysing antibody-sensitized erythrocytes, providing preliminary in vivo functional evidence that this CPP can cross the species barrier to inhibit serum complement activity in rodents. A rational drug design approach was implemented to identify more potent CPP derivatives, resulting in the identification and characterization of a 15 residue peptide (polar assortant (PA)), which demonstrated both superior inhibition of classical complement pathway activation and robust binding to C1q collagen-like tails. PA also inhibited ABO incompatibility in vitro and demonstrated in vivo complement suppression up to 24h post-injection. CPP's ability to inhibit ABO incompatibility in vitro, proof of concept in vivo inhibitory activity in rats and the development of the highly potent PA derivative set the stage for preclinical testing of this molecule in small animal models of complement-mediated disease.


Assuntos
Incompatibilidade de Grupos Sanguíneos/tratamento farmacológico , Proteínas do Capsídeo/farmacologia , Via Clássica do Complemento/efeitos dos fármacos , Lectina de Ligação a Manose da Via do Complemento/efeitos dos fármacos , Peptídeos/farmacologia , Sistema ABO de Grupos Sanguíneos/imunologia , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Humanos , Peptídeos/química , Ratos , Ressonância de Plasmônio de Superfície
8.
PLoS One ; 7(5): e38407, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675461

RESUMO

Similar to other highly successful invasive bacterial pathogens, Staphylococcus aureus recruits the complement regulatory protein factor H (fH) to its surface to inhibit the alternative pathway of complement. Here, we report the identification of the surface-associated protein SdrE as a fH-binding protein using purified fH overlay of S. aureus fractionated cell wall proteins and fH cross-linking to S. aureus followed by mass spectrometry. Studies using recombinant SdrE revealed that rSdrE bound significant fH whether from serum or as a purified form, in both a time- and dose-dependent manner. Furthermore, rSdrE-bound fH exhibited cofactor functionality for factor I (fI)-mediated cleavage of C3b to iC3b which correlated positively with increasing amounts of fH. Expression of SdrE on the surface of the surrogate bacterium Lactococcus lactis enhanced recruitment of fH which resulted in increased iC3b generation. Moreover, surface expression of SdrE led to a reduction in C3-fragment deposition, less C5a generation, and reduced killing by polymorphonuclear cells. Thus, we report the first identification of a S. aureus protein associated with the staphylococcal surface that binds factor H as an immune evasion mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Fator H do Complemento/metabolismo , Evasão da Resposta Imune , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Parede Celular/metabolismo , Coagulase/química , Coagulase/metabolismo , Complemento C3b/metabolismo , Complemento C5a/biossíntese , Humanos , Dados de Sequência Molecular , Neutrófilos/imunologia , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
Mol Immunol ; 48(4): 683-90, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21163532

RESUMO

Staphylococcus aureus is a significant human pathogen that causes skin-structure, invasive, and hospital-associated infections worldwide. The complement system is vital to innate defense against many bacterial infections. As shown with other pathogens, mechanisms for circumventing complement attack may include recruitment of the complement regulatory protein factor H (fH). In the present study, we show that S. aureus binds fH in a dose-dependent and time-dependent manner. Interestingly, this interaction does not require complement activation nor C3-fragment presence and occurs efficiently in the absence of other serum components suggesting a mechanism other than bridging between intermediary molecules. However, fH binding is greater when incubated with normal human serum compared to heat-inactivated serum, which suggests that complement activation may enhance fH binding. S. aureus-bound fH was found to inhibit the alternative pathway through disruption of the alternative pathway C3 convertase as shown by an increase in Bb release and a decrease in total C3-fragment deposition. Furthermore, S. aureus-bound fH retains cofactor activity for factor-I mediated cleavage of C3b. These studies show that the acquisition of fH to the S. aureus surface inhibits complement-mediated opsonization via disruption of the alternative pathway convertase; thus, we report an immune-evasion mechanism not previously described for S. aureus.


Assuntos
Membrana Celular/imunologia , C3 Convertase da Via Alternativa do Complemento/imunologia , Fator H do Complemento/imunologia , Via Alternativa do Complemento/imunologia , Staphylococcus aureus/citologia , Staphylococcus aureus/imunologia , Complemento C3b/imunologia , Ensaio de Imunoadsorção Enzimática , Fibrinogênio/imunologia , Humanos , Ligação Proteica , Staphylococcus aureus/crescimento & desenvolvimento , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA