Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 33(5): 966-984, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35387873

RESUMO

BACKGROUND: The cytokine IL-33 is an activator of innate lymphoid cells 2 (ILC2s) in innate immunity and allergic inflammation. B cell activating factor (BAFF) plays a central role in B cell proliferation and differentiation, and high levels of this protein cause excess antibody production, including IgA. BAFF-transgenic mice overexpress BAFF and spontaneously develop glomerulonephritis that resembles human IgA nephropathy. METHODS: We administered IL-33 or PBS to wild-type and BAFF-transgenic mice. After treating Rag1-deficient mice with IL-33, with or without anti-CD90.2 to preferentially deplete ILC2s, we isolated splenocytes, which were adoptively transferred into BAFF-transgenic mice. RESULTS: BAFF-transgenic mice treated with IL-33 developed more severe kidney dysfunction and proteinuria, glomerular sclerosis, tubulointerstitial damage, and glomerular deposition of IgA and C3. Compared with wild-type mice, BAFF-transgenic mice exhibited increases of CD19+ B cells in spleen and kidney and ILC2s in kidney and intestine, which were further increased by administration of IL-33. Administering IL-33 to wild-type mice had no effect on kidney function or histology, nor did it alter the number of ILC2s in spleen, kidney, or intestine. To understand the role of ILC2s, splenocytes were transferred from IL-33-treated Rag1-deficient mice into BAFF-transgenic mice. Glomerulonephritis and IgA deposition were exacerbated by transfer of IL-33-stimulated Rag1-deficient splenocytes, but not by ILC2 (anti-CD90.2)-depleted splenocytes. Wild-type mice infused with IL-33-treated Rag1-deficient splenocytes showed no change in kidney function or ILC2 numbers or distribution. CONCLUSIONS: IL-33-expanded ILC2s exacerbated IgA glomerulonephritis in a mouse model. These findings indicate that IL-33 and ILC2s warrant evaluation as possible mediators of human IgA nephropathy.


Assuntos
Glomerulonefrite por IGA , Interleucina-33 , Animais , Fator Ativador de Células B , Feminino , Proteínas de Homeodomínio/genética , Humanos , Imunidade Inata , Imunoglobulina A , Interleucina-4 , Linfócitos , Masculino , Camundongos , Camundongos Transgênicos
2.
Biochem Biophys Res Commun ; 518(3): 465-471, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-31443964

RESUMO

Acinetobacter baumannii (A. baumannii) is a clinically relevant, highly drug-resistant pathogen of global concern. An attractive approach to drug design is to specifically target the type II fatty acid synthesis (FASII) pathway which is critical in Gram negative bacteria and is significantly different to the type I fatty acid synthesis (FASI) pathway found in mammals. Enzymes involved in FASII include members of the short-chain dehydrogenase/reductase (SDR) superfamily. SDRs are capable of performing a diverse range of biochemical reactions against a broad spectrum of substrates whilst maintaining conserved structural features and sequence motifs. Here, we use X-ray crystallography to describe the structure of an SDR from the multi-drug resistant bacteria A. baumannii, previously annotated as a putative FASII FabG enzyme. The protein was recombinantly expressed, purified, and crystallized. The protein crystals diffracted to 2.0 Šand the structure revealed a FabG-like fold. Functional assays revealed, however, that the protein was not active against the FabG substrate, acetoacetyl-CoA. This study highlights that database annotations may show the necessary structural hallmarks of such proteins, however, they may not be able to cleave substrates that are typical of FabG enzymes. These results are important for the selection of target enzymes in future drug development.


Assuntos
Acinetobacter baumannii/química , Proteínas de Bactérias/química , Ácido Graxo Sintases/química , NADH NADPH Oxirredutases/química , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla , Ácido Graxo Sintases/metabolismo , Humanos , Modelos Moleculares , NADH NADPH Oxirredutases/metabolismo , Conformação Proteica , Especificidade por Substrato
3.
Front Immunol ; 12: 717594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512640

RESUMO

Kidney transplantation is the most common solid organ transplant and the best current therapy for end-stage kidney failure. However, with standard immunosuppression, most transplants develop chronic dysfunction or fail, much of which is due to chronic immune injury. Tregs are a subset of T cells involved in limiting immune activation and preventing autoimmune disease. These cells offer the potential to provide tolerance or to allow reduction in immunosuppression in kidney transplants. The importance of Tregs in kidney transplantation has been shown in a number of seminal mouse and animal studies, including those with T cell receptors (TCRs) transgenic Tregs (TCR-Tregs) or Chimeric Antigen Receptor (CAR) Tregs (CAR-Tregs) showing that specificity increases the potency of Treg function. Here we outline the animal and human studies and clinical trials directed at using Tregs in kidney transplantation and other tolerance settings and the various modifications to enhance allo-specific Treg function in vivo and in vitro.


Assuntos
Epitopos de Linfócito T/imunologia , Tolerância Imunológica , Transplante de Rim , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Aloenxertos , Animais , Transplante de Medula Óssea , Ensaios Clínicos como Assunto , Citocinas/metabolismo , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Modelos Animais , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA