RESUMO
Coupling between networks is widely prevalent in real systems and has dramatic effects on their resilience and functional properties. However, current theoretical models tend to assume homogeneous coupling where all the various subcomponents interact with one another, whereas real-world systems tend to have various different coupling patterns. We develop two frameworks to explore the resilience of such modular networks, including specific deterministic coupling patterns and coupling patterns where specific subnetworks are connected randomly. We find both analytically and numerically that the location of the percolation phase transition varies nonmonotonically with the fraction of interconnected nodes when the total number of interconnecting links remains fixed. Furthermore, there exists an optimal fraction [Formula: see text] of interconnected nodes where the system becomes optimally resilient and is able to withstand more damage. Our results suggest that, although the exact location of the optimal [Formula: see text] varies based on the coupling patterns, for all coupling patterns, there exists such an optimal point. Our findings provide a deeper understanding of network resilience and show how networks can be optimized based on their specific coupling patterns.
RESUMO
Although detecting and characterizing community structure is key in the study of networked systems, we still do not understand how community structure affects systemic resilience and stability. We use percolation theory to develop a framework for studying the resilience of networks with a community structure. We find both analytically and numerically that interlinks (the connections among communities) affect the percolation phase transition in a way similar to an external field in a ferromagnetic- paramagnetic spin system. We also study universality class by defining the analogous critical exponents δ and γ, and we find that their values in various models and in real-world coauthor networks follow the fundamental scaling relations found in physical phase transitions. The methodology and results presented here facilitate the study of network resilience and also provide a way to understand phase transitions under external fields.
RESUMO
While philanthropic support for science has increased in the past decade, there is limited quantitative knowledge about the patterns that characterize it and the mechanisms that drive its distribution. Here, we map philanthropic funding to universities and research institutions based on IRS tax forms from 685,397 non-profit organizations. We identify nearly one million grants supporting institutions involved in science and higher education, finding that in volume and scope, philanthropy is a significant source of funds, reaching an amount that rivals some of the key federal agencies like the NSF and NIH. Our analysis also reveals that philanthropic funders tend to focus locally, indicating that criteria beyond research excellence play an important role in funding decisions, and that funding relationships are stable, i.e. once a grant-giving relationship begins, it tends to continue in time. Finally, we show that the bipartite funder-recipient network displays a highly overrepresented motif indicating that funders who share one recipient also share other recipients and we show that this motif contains predictive power for future funding relationships. We discuss the policy implications of our findings on inequality in science, scientific progress, and the role of quantitative approaches to philanthropy.
Assuntos
Obtenção de Fundos , Humanos , Organização do Financiamento , Ciência/economia , Universidades , Apoio à Pesquisa como Assunto/economia , Estados Unidos , Organizações sem Fins Lucrativos/economiaRESUMO
Targeted immunization of centralized nodes in large-scale networks has attracted significant attention. However, in real-world scenarios, knowledge and observations of the network may be limited, thereby precluding a full assessment of the optimal nodes to immunize (or quarantine) in order to avoid epidemic spreading such as that of the current coronavirus disease (COVID-19) epidemic. Here, we study a novel immunization strategy where only n nodes are observed at a time and the most central among these n nodes is immunized. This process can globally immunize a network. We find that even for small n (≈10) there is significant improvement in the immunization (quarantine), which is very close to the levels of immunization with full knowledge. We develop an analytical framework for our method and determine the critical percolation threshold p c and the size of the giant component P ∞ for networks with arbitrary degree distributions P(k). In the limit of n â ∞ we recover prior work on targeted immunization, whereas for n = 1 we recover the known case of random immunization. Between these two extremes, we observe that, as n increases, p c increases quickly towards its optimal value under targeted immunization with complete information. In particular, we find a new general scaling relationship between |p c (∞) - p c (n)| and n as |p c (∞) - p c (n)| â¼ n -1exp(-αn). For scale-free (SF) networks, where P(k) â¼ k -γ, 2 < γ < 3, we find that p c has a transition from zero to nonzero when n increases from n = 1 to O(log N) (where N is the size of the network). Thus, for SF networks, having knowledge of ≈log N nodes and immunizing the most optimal among them can dramatically reduce epidemic spreading. We also demonstrate our limited knowledge immunization strategy on several real-world networks and confirm that in these real networks, p c increases significantly even for small n.
RESUMO
Earthquakes are one of the most devastating natural disasters that plague society. Skilled, reliable earthquake forecasting remains the ultimate goal for seismologists. Using the detrended fluctuation analysis (DFA) and conditional probability (CP) methods, we find that memory exists not only in interoccurrence seismic records but also in released energy as well as in the series of the number of events per unit time. Analysis of a standard epidemic-type aftershock sequences (ETAS) earthquake model indicates that the empirically observed earthquake memory can be reproduced only for a narrow range of the model's parameters. This finding therefore provides tight constraints on the model's parameters and can serve as a testbed for existing earthquake forecasting models. Furthermore, we show that by implementing DFA and CP results, the ETAS model can significantly improve the short-term forecasting rate for the real (Italian) earthquake catalog.
RESUMO
We present analytic and numeric results for percolation in a network formed of interdependent spatially embedded networks. We show results for a treelike and a random regular network of networks each with (i) unconstrained dependency links and (ii) dependency links restricted to a maximum Euclidean length r. Analytic results are given for each network of networks with spatially unconstrained dependency links and compared to simulations. For the case of two fully interdependent spatially embedded networks it was found [Li et al., Phys. Rev. Lett. 108, 228702 (2012)] that the system undergoes a first-order phase transition only for r>r(c) ≈ 8. We find here that for treelike networks of networks (composed of n networks) r(c) significantly decreases as n increases and rapidly (n ≥ 11) reaches its limiting value of 1. For cases where the dependencies form loops, such as in random regular networks, we show analytically and confirm through simulations that there is a certain fraction of dependent nodes, q(max), above which the entire network structure collapses even if a single node is removed. The value of q(max) decreases quickly with m, the degree of the random regular network of networks. Our results show the extreme sensitivity of coupled spatial networks and emphasize the susceptibility of these networks to sudden collapse. The theory proposed here requires only numerical knowledge about the percolation behavior of a single network and therefore can be used to find the robustness of any network of networks where the profile of percolation of a singe network is known numerically.