Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Food Sci ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150703

RESUMO

Mesona chinensis Benth (MCB) is the source of the most commonly consumed herbal beverage in Southeast Asia and China and is thus an economically important agricultural plant. Therefore, optimal extraction and production procedures have significant commercial value. Currently, in terms of green chemistry, researchers are investigating the use of greener solvents and innovative extraction techniques to increase extract yields. This study represents the first investigation of the optimal conditions for ultrasound-assisted deep eutectic solvent (DES) extraction from MCB. The major factors influencing ultrasound-assisted DESs were optimized using the response surface methodcentral-genetic algorithm-back propagation neural networks. This model demonstrated superior predictability and accuracy compared to the RSM model. Various types of DESs were used for the extraction of MCB constituents, with choline chloride-ethylene glycol resulting in the highest yield. The optimal conditions for maximal extraction were the use of choline chloride-ethylene glycol (1:4) as the solvent with a 40% water content, an extraction duration of 60 min at 60°C, and maintaining a leaf-to-solvent ratio of 20 mL/g. Noticeable enhancements in Van der Waals forces and more robust interactions between DESs and the target chemicals were observed relative to those seen with ethanol (70%, v/v) or water. This investigation not only introduced an environmentally friendly approach for highly efficient extraction from MCB but also identified the mechanisms underlying the improved extraction efficacy. These findings have the potential to contribute to the broader utilization of MCB and provide valuable insights into the extraction mechanisms utilizing deep eutectic solvents. PRACTICAL APPLICATION: This work describes an efficient and green ultrasound-assisted deep eutectic solvent (DES) method for Mesona chinensis Benth (MCB) extraction. Molecular dynamics was used to examine the intermolecular interactions between the solvent and the extracted compounds. It is anticipated that green and environmentally friendly solvents, such as DESs, will be used in further research on foods and their bioactive components. With the development of the herbal tea industry, new products made of MCB are becoming increasingly popular, thus gradually making it a research hotspot.

2.
Exp Biol Med (Maywood) ; 247(2): 106-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644201

RESUMO

In this study, we aim to identify the clinical significance of basonuclin 1 (BNC1) expression in ovarian carcinoma (OV) and to explore its latent mechanisms. Via integrating in-house tissue microarrays, gene chips, and RNA-sequencing data, we explored the expression and clinical value of BNC1 in OV. Immunohistochemical staining was utilized to confirm the protein expression status of BNC1. A combined SMD of -2.339 (95% CI: -3.649 to -1.028, P < 0.001) identified that BNC1 was downregulated based on 1346 samples, and the sROC (AUC = 0.93) showed a favorable discriminatory ability of BNC1 in OV patients. We used univariate and multivariate Cox regulation to evaluate the prognostic role of BNC1 for OV patients, and a combined hazard ratio of 0.717 (95% CI: 0.445-0.989, P < 0.001) revealed that BNC1 was a protective factor for OV. Furthermore, the fraction of infiltrating naive B cells, memory B cells, and other immune cells showed statistical differences between the high- and low-BNC1 expression groups through cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. Enrichment analysis showed that BNC1 may have a relationship with immune-related items in OV. By predicting the potential regulatory transcription factors (TFs) of BNC1, friend leukemia virus integration 1 (FLI1) may be a potential upstream TF of BNC1. Corporately, a decreasing trend of BNC1 may serve as a tumor suppressor and prognostic biomarker in OV patients. Moreover, BNC1 may take part in immune-related pathways and influence the fraction of tumor-infiltrating immune cells.


Assuntos
Proteínas de Ligação a DNA/imunologia , Regulação para Baixo/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células B de Memória/imunologia , Neoplasias Ovarianas/imunologia , Fatores de Transcrição/imunologia , Proteínas Supressoras de Tumor/imunologia , Feminino , Humanos , Linfócitos do Interstício Tumoral/patologia , Células B de Memória/patologia , Neoplasias Ovarianas/patologia
3.
Pharmgenomics Pers Med ; 15: 999-1017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36536885

RESUMO

Background: Radiation resistance is a challenge that limits the therapeutic benefit of colorectal cancer (CRC) treatment, but the mechanism underlying CRC radiation resistance remains unclear. Andrographolide shows a broad-spectrum anti-tumor effect in various malignancies, including CRC, its effect and how it functions in CRC initiation, and radiation have not been established. This study aimed to explore the mechanism of CRC radiation resistance and the potential mechanisms of andrographolide on CRC radiation. Methods: Two acquired radioresistant cell lines were established and high throughput sequencing was employed to screen out the differentially expressed genes. The expression of AZGP1, which was upregulated in the acquired radioresistant tissues, was verified by microarray data recomputing. The common targets of andrographolide, CRC initiation, and radiation resistance were obtained, and the corresponding functional enrichment and pathway analysis were performed. The interaction between AZGP1 and andrographolide was investigated using molecular docking. Results: AZGP1 was upregulated in both the radioresistant cell model and microarray data. Moreover, AZGP1 was upregulated in cancerous colorectal tissue and displayed a tendency toward elevated expression in patients with an unfavorable prognosis. AZGP1 was identified as the common target of andrographolide, colorectal cancer initiation, and radiotherapy resistance. Ultimately, the protein structure of AZGP1 proved to be closely intertwined with the crystal texture of andrographolide. Conclusion: AZGP1 is recognized as a crucial factor for both CRC initiation and radioresistance. Andrographolide may affect the radioresistance of CRC via the targeting of AZGP1. Thus, the combination of andrographolide and AZGP1 intervention might be a promising strategy for improving the treatment benefit of CRC radiotherapy.

4.
Bioengineered ; 12(1): 1627-1641, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33949293

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of mortality in cancer patients, but the association between miR-125b-2-3p and the onset and prognosis of HCC has not been reported in previous studies; thus, the clinicopathological implications of miR-125b-2-3p in HCC require elaboration. To examine the expression of miR-125b-2-3p in HCC, both in-house RT-qPCR and public datasets were used to calculate the standard mean difference (SMD) and the summary receiver operating characteristic (sROC). MiR-125b-2-3p was markedly lower in HCC than in non-tumor tissue as assessed by the in-house RT-qPCR which was confirmed by the integrative analysis showing the SMD being -0.69 and the area under the curve (AUC) being 0.84 based on 1,233 cases of HCC and 630 cases of non-HCC controls. To gain a overview of the clinical value of miR-125b-2-3p in HCC, all possible datasets were integrated, and lower miR-125b-2-3p levels could lead to poorer differentiation and a more advanced clinical stage of HCC. The hazard ratio (HR) of miR-125b-2-3p was also calculated using a Cox proportional hazards model, and the miR-125b-2-3p level could act as an protective indication for the survival with the HR being 0.74 based on 586 cases of HCC. Furthermore, the effect of nitidine chloride (NC), a natural bioactive phytochemical alkaloid, on the regulation of miR-125b-2-3p and its potential targets was also investigated. The miR-125b-2-3p level was increased after NC treatment, while the expression of its potential target PRKCA was reduced. Above all, a low-expressed level of miR-125b-2-3p plays a tumor suppressive role in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , Carcinoma Hepatocelular/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/metabolismo , Prognóstico , Curva ROC , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA