Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Eye Res ; 212: 108695, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34228966

RESUMO

OBJECTIVE: The aim of this study is to evaluate the cellular biomechanical properties and MMP-2 expression changes in rabbit scleral fibroblasts using two modes of riboflavin and ultraviolet A (UVA) collagen cross-linking (CXL). METHODS: Twenty-four New Zealand white rabbits were randomly divided into two groups, A and B. The left eye was chosen for the experimental group and the right eye for the control group. In group A, the eyes were irradiated for 30 min, with a power density of 3.0 mW/cm2. In group B, the eyes were irradiated for 9 min, with a power density of 10.0 mW/cm2. One week after CXL, full-field electroretinography was performed. Sixty days after CXL, the rabbits were sacrificed, and scleral fibroblasts were extracted from the CXL-treated sclera area and corresponding parts of control sclera and cultured. Cellular biomechanical properties were evaluated using the micropipette aspiration technique, and the MMP-2 protein expression was determined by Western blot analysis. RESULTS: There was no statistical difference in the amplitude and latency of the dark adaptation 3.0 and light adaptation 3.0 between the CXL and control eyes of groups A and B (P > 0.05). Compared with the control groups, the Young's modulus of the fibroblasts and apparent viscosity of the experimental eyes in groups A and B were increased after CXL (P < 0.05), but there was no significant difference between the two groups under different irradiation modes (P > 0.05). The MMP-2 expression in scleral fibroblasts from experimental eyes was significantly higher than that in scleral fibroblasts from control eyes in groups A and B. Under the two different irradiation modes, the MMP-2 expression in the scleral fibroblasts from experimental eyes in group A was significantly higher than that in the scleral fibroblasts from experimental eyes in group B. CONCLUSION: The riboflavin-UVA scleral CXL conducted in two different modes produced no significant side effects on the retina and could strengthen the cell biomechanical properties as well as increase the MMP-2 expression of scleral fibroblasts significantly.


Assuntos
Colágeno/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Metaloproteinase 2 da Matriz/biossíntese , Miopia/tratamento farmacológico , Riboflavina/farmacologia , Esclera/patologia , Raios Ultravioleta , Animais , Adaptação à Escuridão , Modelos Animais de Doenças , Elasticidade , Eletrorretinografia , Fibroblastos/metabolismo , Fibroblastos/patologia , Miopia/metabolismo , Miopia/fisiopatologia , Fármacos Fotossensibilizantes/farmacologia , Coelhos , Esclera/metabolismo
2.
Eur J Pharmacol ; 983: 176998, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39271038

RESUMO

BACKGROUND: Bacterial keratitis is a common cause of blindness. Antibiotic treatment leads to the rapid release of lipopolysaccharide (LPS), which can activate corneal fibroblasts and cause persistent and excessive inflammatory responses. The anti-inflammatory drugs currently used to treat keratitis have serious side effects. Therefore, the ability of sodium butyrate (NaB), which can suppress the production of proinflammatory cytokines and promote the production of anti-inflammatory cytokines, to ameliorate keratitis was assessed in the present study. METHODS: The effect of NaB on the viability of primary human corneal fibroblasts was assayed with a CCK-8 kit. Cell migration was assessed by an in vitro scratch assay. Cell phenotypes were assessed by Western blotting and immunofluorescence staining. An antibody array was used to measure the production of proinflammatory cytokines and chemokines. RESULTS: At 0-1 mM, NaB had no significant effect on cell viability, promoted the expression of the keratocyte marker keratocan and inhibited the fibroblast marker vimentin. Inhibition of cell migration was observed in the wound healing assay. By targeting the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway, NaB decreased the levels of inflammation-related cytokines and chemokines whose expression was induced by LPS. CONCLUSIONS: NaB maintained the keratocyte phenotype, inhibited cell migration, and relieved LPS-induced inflammatory responses through the JAK/STAT signalling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA