RESUMO
Pyridaben is a broad-spectrum, contact-killing acaricide that can be used to control a variety of harmful food and plant mites. Pyridaben displays cardiotoxicity and liver toxicity toward fish, but the effects on fish embryonic development have not been characterized. We exposed early zebrafish embryos to 20, 30, and 40⯵g/L concentrations of pyridaben. The exposure caused developmental abnormalities, including delayed embryonic shield formation, yolk sac resorption, decreases in body length, reduced pigmentation, and delays in hatching. Pyridaben caused a significant increase in the transcription level of the endoderm marker foxa2, but the transcription levels of the ectoderm development marker foxb1a and the mesoderm development marker snaila were not significantly altered. The transcription levels of the genes SOX17 in early embryos were significantly reduced. After exposure to pyridaben, catalase (CAT) activity and glutathione (GSH) content were increased, and cyclin D1, that is involved in early embryonic development, was abnormally expressed. This study shows that pyridaben causes anomalous development in zebrafish embryos by interfering with the cell cycle order of early embryonic development and inducing excessive oxidative stress. Colivelin, an agonist of the STAT3 signaling pathway, acted as a salvage drug to restore the cell cycle order during embryonic development following exposure to pyridaben. Thus, the toxic effects may be caused by pyridaben's regulation of the STAT3 signaling pathway.
Assuntos
Ciclo Celular , Embrião não Mamífero , Desenvolvimento Embrionário , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Desenvolvimento Embrionário/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Piridazinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genéticaRESUMO
Liver injury can lead to different hepatic diseases, which are the mainly causes of high global mortality and morbidity. Autophagy and Sirtuin type 1 (SIRT1) have been shown protective effects in response to liver injury. Previous studies have showed that Fibroblast growth factor 21 (FGF21) could alleviate acute liver injury (ALI), but the mechanism remains unclear. Here, we verified the relationship among FGF21, autophagy and SIRT1 in carbon tetrachloride (CCl4 )-induced ALI. We established CCl4 -induced ALI models in C57BL/6 mice and the L02 cell line. The results showed that FGF21 was robustly induced in response to stress during the development of ALI. After exogenous FGF21 treatment in ALI models, liver damage in ALI mice was significantly reduced, as well as serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Consistently, FGF21 also greatly reduced the levels of ALT, AST, pro-inflammatory cytokines interleukin 6 (IL6) and tumour necrosis factor-alpha (TNFα) in ALI cell lines. Mechanistically, exogenous FGF21 treatment efficiently upregulated the expression of autophagy marker microtubule-associated protein light chain-3 beta (LC3 II) and autophagy key molecule coiled-coil myosin-like BCL2-interacting protein (Beclin1), which was accompanied by alleviating hepatotoxicity in CCl4 -treated wild-type mice. Then, we examined how FGF21 induced autophagy expression and found that SIRT1 was also upregulated by FGF21 treatment. To further verify our results, we constructed an anti-SIRT1 lentit-RNAi to inhibit SIRT1 expression in mice and L02 cells, which reversed the protective effect of FGF21 on ALI. In summary, these results indicate that FGF21 alleviates ALI by enhancing SIRT1-mediated autophagy.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Sirtuína 1 , Animais , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fatores de Crescimento de Fibroblastos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 1/genética , Sirtuína 1/metabolismoRESUMO
Nitazoxanide (NTZ) is a broad-spectrum antiparasitic and antiviral drug (thiazole). However, although NTZ has been extensively used, there are no reports concerning its toxicology in vertebrates. This study used the zebrafish as a vertebrate model to evaluate the safety of NTZ and to analyse the related molecular mechanisms. The experimental results showed that zebrafish embryos exposed to NTZ had cardiac malformation and dysfunction. NTZ also significantly inhibited proliferation and promoted apoptosis in cardiomyocytes. Transcriptomic analysis used compared gene expression levels between zebrafish embryos in the NTZ treatment and the control groups identified 200 upregulated genes and 232 downregulated genes. Analysis by Kyoto encyclopaedia of genes and genomes (KEGG) and gene ontology (GO) showed that signal pathways on cardiomyocyte development were inhibited while the oxidative stress pathways were activated. Further experiments showed that NTZ increased the content of reactive oxygen species (ROS) in the hearts of zebrafish. Antioxidant gadofullerene nanoparticles (GFNPs) significantly alleviated the developmental toxicity to the heart, indicating that NTZ activated the oxidative stress response to cause embryonic cardiomyocyte injury in zebrafish. This study provides evidence that NTZ causes developmental abnormalities in the cardiovascular system of zebrafish.
Assuntos
Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nitrocompostos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Tiazóis/efeitos adversos , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Cardiotoxicidade , Biologia Computacional/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Peixe-ZebraRESUMO
Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity.
RESUMO
Monosultap (Mon) is a broad-spectrum insecticide used in agricultural production to control stem borers in rice fields. Currently, little evidence shows how Mon affects notochord development in zebrafish (Danio rerio). In our study, zebrafish embryos were exposed to 0.25, 0.5, and 0.75 mg/L Mon to determine the effects of different concentrations of Mon on notochord development. Mon exposure reduced the body length, decreased the heart rate and hatchability, and induced notochord deformity in zebrafish. The effects of Mon exposure on the internal organization of the notochord and the structural abnormalities were determined based on histological staining of paraffinized tissue sections. Quantitative polymerase chain reaction (qPCR) and in situ hybridization findings revealed that the expression levels of genes related to notochord development (shha, col2a, and ptch2) showed an increasing trend in a concentration-dependent manner. An abnormal increase of apoptosis and cell proliferation in some parts of the notochord suggested that Mon exposure could cause developmental abnormality of the notochord. This study revealed the toxicity of Mon in notochord development. Our findings provide information in assessing the risk of Mon to the ecological environment and human health.
Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Humanos , Notocorda/patologia , Ésteres do Ácido Sulfúrico , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologiaRESUMO
Regeneration of a part of the diseased liver after surgical resection is mainly achieved by the proliferation of the remaining healthy liver cells. However, in case of extreme loss of liver cells or in the final stages of chronic liver disease, most liver cells are depleted or lose their ability to proliferate. Therefore, to foster liver regeneration, it is of great clinical and scientific significance to improve the survival and proliferation ability of residual hepatocytes. In this study, we conducted experiments on a zebrafish model of targeted ablation of liver cells to clarify the role of fibroblast growth factor 21 (FGF21). We found that FGF21 increased the regeneration area of the damaged liver and improved the survival rate of damaged liver cells by inhibiting cell apoptosis and reducing oxidative stress. Our results also showed that administration of FGF21 upregulated autophagy, and the beneficial effects of FGF21 were reversed by the well-known autophagy inhibitor chloroquine (CQ), indicating that FGF21-activated autophagy played a central role in the treatment. We further showed that the enhancement of autophagy induced by FGF21 was due to the activation of the AMPK-mTOR signaling pathway. Taken together, these data provide new evidence that FGF21 is an effective autophagy regulator that can significantly improve the survival of damaged livers.
RESUMO
Cyhalofop-butyl is a kind of aromatic phenoxypropionic acid herbicide widely used in agriculture. However, studies on its immunotoxicity to aquatic organisms have not been reported. In this study paper, morphological, immunological, cytological, biochemical and molecular biology methods were used to study the effects of cyhalofop-butyl on the developmental toxicity and immunotoxicity in zebrafish. After cyhalofop-butyl exposed, the results showed that the zebrafish embryos had shorter length, yolk sac edema, significantly reduced number of immune cells, inflammatory response and immunocytes apoptosis. In addition, we found that the expression of immune-related genes and pro-apoptotic genes were up-regulated, and the JAK-STAT signaling pathway mediated the immunotoxicity induced by cyhalofop-butyl. Therefore, our results indicate that cyhalofop-butyl has developmental toxicity and immunotoxicity to zebrafish, and this study offer new contents for the effects of cyhalofop-butyl exposure on aquatic organisms.
Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Butanos , Embrião não Mamífero , Desenvolvimento Embrionário , Nitrilas , Poluentes Químicos da Água/toxicidadeRESUMO
Thiophanate-methyl (TM) is widely used all over the world and is a typical example of pesticide residues, which can be detected in the soil, and even in vegetables and fruits. However, the molecular mechanisms underlying the hepatotoxicity of TM are not well understood. In this study, we utilized zebrafish to comprehensively evaluate the hepatotoxicity of TM and explore how the molecular mechanisms of hepatotoxicity are induced. The zebrafish larvae were exposed in 6.25, 12.5 and 25â¯mg/L TM from 72 to 144 hpf, while the adults were exposed in 2, 4 and 6â¯mg/L TM for 28 days. Here, we found that 12.5 and 25â¯mg/L TM induces specifically serious hepatotoxicity but not the toxicity of other organs in zebrafish larvae and adults. Moreover, it might triggered hepatotoxicity by activating the caspase-3 through apoptotic pathways and oxidative stress in zebrafish. Subsequently, this resulted in a metabolic imbalance in the zebrafish's liver. In conclusion, our results disclosed the fact that TM may induce severe hepatotoxicity by mediating activation of caspase-3 and oxidative stress in zebrafish.