Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467445

RESUMO

The traditional cone penetration test system uses cable to transmit data; as the probe goes deeper into the ground, the length of the cable will become longer. This makes the installation of the test equipment more complicated, and excessively long cables cause signal distortion and seriously affect data accuracy. To simplify the experimental equipment and improve the accuracy of data acquisition, a cableless cone penetration test system is proposed. The improved system uses an SD card to store the experimental data, as opposed to using cables for communication which, often lead to the distortion of signals caused by long-distance communication and data loss caused by accidental cable breaks. Therefore, the accuracy of the collected data is higher, and the experimental device is simplified. To evaluate the applicability and efficiency of our design, we have carried out exploration experiments with the sensor system proposed in this paper. The test results show that the experimental data collected by the new system are basically consistent with the data collected by traditional cable CPT equipment, and the accuracy of the collected data is higher. It is more reliable and accurate to analyze the comprehensive mechanical properties of the soil layers with the data collected by the new system.

2.
Nanomaterials (Basel) ; 13(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242098

RESUMO

Graphene/silicon (Si) heterojunction photodetectors are widely studied in detecting of optical signals from near-infrared to visible light. However, the performance of graphene/Si photodetectors is limited by defects created in the growth process and surface recombination at the interface. Herein, a remote plasma-enhanced chemical vapor deposition is introduced to directly grow graphene nanowalls (GNWs) at a low power of 300 W, which can effectively improve the growth rate and reduce defects. Moreover, hafnium oxide (HfO2) with thicknesses ranging from 1 to 5 nm grown by atomic layer deposition has been employed as an interfacial layer for the GNWs/Si heterojunction photodetector. It is shown that the high-k dielectric layer of HfO2 acts as an electron-blocking and hole transport layer, which minimizes the recombination and reduces the dark current. At an optimized thickness of 3 nm HfO2, a low dark current of 3.85 × 10-10, with a responsivity of 0.19 AW-1, a specific detectivity of 1.38 × 1012 as well as an external quantum efficiency of 47.1% at zero bias, can be obtained for the fabricated GNWs/HfO2/Si photodetector. This work demonstrates a universal strategy to fabricate high-performance graphene/Si photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA