Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Talanta ; 273: 125848, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432072

RESUMO

Prussian blue analogues, as prospective electrode materials, play a crucial role in detecting heavy metal ions (HMIs), a process closely related to their electron transfer capacities and active surfaces. Here, etched copper-iron Prussian blue analogues (CuFe-PBA) are synthesized through a combination of flash nanoprecipitation (FNP) and an alkali etching process. Furthermore, this study investigates the impact of ammonia on the electronic structure of CuFe-PBA and its electrochemical detection capabilities for HMIs. The etched CuFe-PBA (e-CuFe-PBA) exhibits excellent detection performance for Cd2+, Pb2+ and Hg2+ with 17.6 µA µM-1, 24.2 µA µM-1 and 26.2 µA µM-1, respectively, due to the fact that the ammonia etching not only modulates the electronic properties of the surface of CuFe-PBA but also reduces the degree of agglomeration and enhances the accessible surface area. Additionally, it demonstrates excellent stability and resistance to interference, having been successfully applied to detect HMIs in food samples such as preserved eggs and apple juice. These results provide a new strategy for the use of Prussian blue analogues as electrochemical sensors for food safety applications.


Assuntos
Cádmio , Ferrocianetos , Mercúrio , Chumbo , Amônia , Estudos Prospectivos , Ovos
2.
Int J Biol Macromol ; 257(Pt 2): 128715, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081484

RESUMO

Hydrogels with excellent high-water uptake and flexibility have great potential for wound dressing. However, pure hydrogels without fiber skeleton faced poor water retention, weak fatigue resistance, and mechanical strength to hinder the development of the dressing as next-generation functional dressings. We prepared an ultrafast gelation (6 s) Fe3+/TA-CNC hydrogel (CTFG hydrogel) based on a self-catalytic system and bilayer self-assembled composites. The CTFG hydrogel has excellent flexibility (800% of strain), fatigue resistance (support 60% compression cycles), antibacterial, and self-adhesive properties (no residue or allergy after peeling off the skin). CTFG@S bilayer composites were formed after electrospun silk fibroin (SF) membranes were prepared and adhesive with CTFG hydrogels. The CTFG@S bilayer composites had significant UV-shielding (99.95%), tensile strain (210.9 KPa), and sensitive humidity-sensing properties. Moreover, the integrated structure improved the mechanical properties of electrospun SF membranes. This study would provide a promising strategy for rapidly preparing multifunctional hydrogels for wound dressing.


Assuntos
Celulose , Fibroínas , Polifenóis , Cimentos de Resina , Bandagens , Antibacterianos/farmacologia , Hidrogéis , Água
3.
Biosensors (Basel) ; 13(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38131785

RESUMO

Wearable electronics is a technology that closely integrates electronic devices with the human body or clothing, which can realize human-computer interaction, health monitoring, smart medical, and other functions. Wearable physical sensors are an important part of wearable electronics. They can sense various physical signals from the human body or the surrounding environment and convert them into electrical signals for processing and analysis. Nanowires (NW) have unique properties such as a high surface-to-volume ratio, high flexibility, high carrier mobility, a tunable bandgap, a large piezoresistive coefficient, and a strong light-matter interaction. They are one of the ideal candidates for the fabrication of wearable physical sensors with high sensitivity, fast response, and low power consumption. In this review, we summarize recent advances in various types of NW-based wearable physical sensors, specifically including mechanical, photoelectric, temperature, and multifunctional sensors. The discussion revolves around the structural design, sensing mechanisms, manufacture, and practical applications of these sensors, highlighting the positive role that NWs play in the sensing process. Finally, we present the conclusions with perspectives on current challenges and future opportunities in this field.


Assuntos
Nanofios , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica , Temperatura
4.
ACS Appl Mater Interfaces ; 15(40): 47094-47102, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769112

RESUMO

Widespread interest has been generated by aqueous zinc batteries (AZIBs), which have excellent theoretical capacities (820 mA h g-1), a low redox potential (-0.76 V vs SHE of Zn metal), and high security. Suitable cathodes for constructing high performance AZIBs are of great signification. Metal-organic frameworks (MOFs) with adjustable structure via metals and organic units show great potential in AZIBs. In this work, ZnMn-Squaric acid (ZnMn-SQ) was synthesized using squaric acid through coprecipitation and served as the cathode for AZIBs. The ZnMn-SQ electrode demonstrated a high capacity of 489.1 mA h g-1 at 0.2 A g-1. Meanwhile, ZnMn-SQ can obtain 80.7 mA h g-1 after 1300 cycles, showing an outstanding long cycle life. More importantly, ex situ characterizations of XRD, XPS, and FT-IR revealed that ZnMn-SQ undergoes a structural transformation from the initial ZnMn-SQ framework to manganese oxide accompanied by Zn-SQ and then reduced to MnOOH, ZnMn2O4, and Zn4SO4(OH)6·5H2O (ZHS) in subsequent cycles. In addition, a modified zinc anode using cubic porous Zn-SQ-3d was used to construct ZnMn-SQ // Zn-SQ-3d@Zn(Zn-SQ-3d-coated Zn) high performance AZIBs, the capacity of which reaches 171.3 mA h g-1 at 1 A g-1 after 660 cycles. This work provided chances for constructing high-performance zinc ion batteries using MOF compounds.

5.
Biomed Chromatogr ; 20(3): 251-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16145658

RESUMO

A liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated for the assay of glucosamine sulfate in human plasma. Plasma proteins were precipitated by acetonitrile, followed by vortex mixing and centrifugation. The supernatant was transferred and derivatized with phenyl iso-thiocyanate in acetonitrile at 60 degrees C for 40 min. Chromatographic separation was performed on a C(18) column (Inertsil ODS-3 150 x 2.1 mm i.d., 5 microm, JP) with a mobile phase gradient consisting of 0.2% acetic acid (aqueous) and methanol at a flow-rate of 0.3 mL/min. MS detection using electrospray ionization (ESI) as an interface was used in single ion monitoring mode to determine positive ions at m/z 297. This method was shown to be selective and sensitive for glucosamine sulfate. The limit of detection was 35 ng/mL for glucosamine sulfate in plasma and the linear range was 0.1-20 microg/mL in plasma with a correlation coefficient (r) of 0.9991. The relative standard deviations (RSDs) of intra-day and inter-day assays were 8.7-11.4 and 9.8-12.6%, respectively. Extraction recoveries of glucosamine sulfate in plasma were greater than 73%. This method proved to be simple, reproducible and feasible for pharmacokinetic studies of glucosamine sulfate in healthy volunteers after a single oral administration (1500 mg). The pharmacokinetic parameters and relative bioavailabilities were investigated for both domestic glucosamine sulfate tablet and capsule preparations compared with an imported capsule product.


Assuntos
Cromatografia Líquida/métodos , Glucosamina/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Área Sob a Curva , Glucosamina/farmacocinética , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA