Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(9): 4281-4290, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38391182

RESUMO

Particulate brown carbon (BrC) plays a crucial role in the global radiative balance due to its ability to absorb light. However, the effect of molecular formation on the light absorption properties of BrC remains poorly understood. In this study, atmospheric BrC samples collected from six Chinese megacities in winter and summer were characterized through ultrahigh-performance liquid chromatography coupled with Orbitrap mass spectrometry (UHPLC-Orbitrap MS) and light absorption measurements. The average values of BrC light absorption coefficient at a wavelength of 365 nm (babs365) in winter were approximately 4.0 times higher than those in summer. Nitrogen-containing organic molecules (CHNO) were identified as critical components of light-absorbing substances in both seasons, underscoring the importance of N-addition in BrC. These nitrogen-containing BrC chromophores were more closely related to nitro-containing compounds originating from biomass burning and nitrogen oxides (NOx)/nitrate (NO3-) reactions in winter. In summer, they were related to reduced N-containing compounds formed in ammonia (NH3)/ammonium (NH4+) reactions. The NH3/NH4+-mediated reactions contributed more to secondary BrC in summer than winter, particularly in southern cities. Compared with winter, the higher O/Cw, lower molecule conjugation indicator (double bond equivalent, DBE), and reduced BrC babs365 in summer suggest a possible bleaching mechanism during the oxidation process. These findings strengthen the connection between molecular composition and the light-absorbing properties of BrC, providing insights into the formation mechanisms of BrC chromophores across northern and southern Chinese cities in different seasons.


Assuntos
Poluentes Atmosféricos , Carbono , Cidades , Nitrogênio/análise , Aerossóis/análise , Carvão Mineral/análise , Nitrocompostos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise
2.
Environ Sci Technol ; 58(25): 11118-11127, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38864774

RESUMO

Intermediate volatility organic compounds (IVOCs) are important precursors to secondary organic aerosols (SOAs), but they are often neglected in studies concerning SOA formation. This study addresses the significant issue of IVOCs emissions in the Qinghai-Tibetan plateau (QTP), where solid fuels are extensively used under incomplete combustion conditions for residential heating and cooking. Our field measurement data revealed an emission factor of the total IVOCs (EFIVOCs) ranging from 1.56 ± 0.03 to 9.97 ± 3.22 g/kg from various combustion scenarios in QTP. The markedly higher EFIVOCs in QTP than in plain regions can be attributed to oxygen-deficient conditions. IVOCs were dominated by gaseous phase emissions, and the primary contributors of gaseous and particulate phase IVOCs are the unresolved complex mixture and alkanes, respectively. Total IVOCs emissions during the heating and nonheating seasons in QTP were estimated to be 31.7 ± 13.8 and 6.87 ± 0.45 Gg, respectively. The estimated SOA production resulting from combined emissions of IVOCs and VOCs is nearly five times higher than that derived from VOCs alone. Results from this study emphasized the pivotal role of IVOCs emissions in air pollution and provided a foundation for compiling emission inventories related to solid fuel combustion and developing pollution prevention strategies.


Assuntos
Aerossóis , Poluentes Atmosféricos , Carvão Mineral , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , China , Animais , Tibet , Monitoramento Ambiental
3.
Environ Sci Technol ; 57(38): 14280-14288, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37706300

RESUMO

Methoxyphenols and nitroaromatic compounds (NACs) have strong atmospheric radiative forcing effects and adverse effects on human health. They are emitted from the incomplete combustion of solid fuels and are secondarily formed through photochemical reactions. Here, an on-site study was conducted to determine the primary emission and secondary formation of particulate phase products from a variety of solid fuels through a potential aerosol mass-oxidation flow reactor. Emission factors for total quantified methoxyphenols and NACs (i.e., EF∑Methoxyphenols and EF∑NACs) varied by 2 orders of magnitude among different fuels, which were greatly influenced by volatile matter, incomplete combustibility, flame intensity, and combustion temperature. Guaiacol and 4-nitro-2-vinylphenol were used as tracers for primary organic aerosol due to the low aged-to-fresh ratios (0.21-0.97), while 4-methyl-guaiacol, 4-ethyl-guaiacol, eugenol, 4-methyl-syringol, isoeugenol, acetovanillone, syringaldehyde, homovanillin acid, vanillin acid, and syringic acid were identified as secondary organic aerosol (SOA) (aged-to-fresh ratios between 1.90 and 4.20). During simulated aging, the -CHO group reacted with the hydroxyl radical (•OH) to form the -COOH group, but there was no correlation between syringol and 4-nitrosyringol, implying that •OH is the main reactant rather than the nitriate radical (•NO3) in the atmospheric aging processes of methoxyphenols. Aging caused substantially different emission profiles due to variable photochemical reaction properties. The fresh EFs for guaiacol emitted from the biomass burning ranged from 3.80 ± 0.44 to 26.2 ± 5.40 mg·kg-1, which were much higher than those in coal combustions (of 0.03 ± 0.01 to 1.42 ± 0.28 mg·kg-1). However, the aged EFs (EFaged) for guaiacol was 1.02 ± 0.06 to 1.61 ± 0.11 mg·kg-1 in most biomass combustions, which were comparable with those of the bituminous chunk (1.20 ± 0.16 mg·kg-1). Therefore, guaiacol, a traditional biomass marker, is not an ideal tracer for aged PM2.5 emitted from biomass burning. Indeed, the syringol/guaiacol and syringol/4-nitrosyringol ratios were found to be more suitable and efficient to be used in source characterization.


Assuntos
Envelhecimento , Pirogalol , Humanos , Idoso , Biomassa , Carvão Mineral
4.
Proc Natl Acad Sci U S A ; 117(18): 9755-9761, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32300007

RESUMO

Aerosol-radiation interaction (ARI) plays a significant role in the accumulation of fine particulate matter (PM2.5) by stabilizing the planetary boundary layer and thus deteriorating air quality during haze events. However, modification of photolysis by aerosol scattering or absorbing solar radiation (aerosol-photolysis interaction or API) alters the atmospheric oxidizing capacity, decreases the rate of secondary aerosol formation, and ultimately alleviates the ARI effect on PM2.5 pollution. Therefore, the synergetic effect of both ARI and API can either aggravate or even mitigate PM2.5 pollution. To test the effect, a fully coupled Weather Research and Forecasting (WRF)-Chem model has been used to simulate a heavy haze episode in North China Plain. Our results show that ARI contributes to a 7.8% increase in near-surface PM2.5 However, API suppresses secondary aerosol formation, and the combination of ARI and API results in only 4.8% net increase of PM2.5 Additionally, API increases the solar radiation reaching the surface and perturbs aerosol nucleation and activation to form cloud condensation nuclei, influencing aerosol-cloud interaction. The results suggest that API reduces PM2.5 pollution during haze events, but adds uncertainties in climate prediction.

5.
Environ Sci Technol ; 56(7): 3974-3983, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35195986

RESUMO

The clean heating renovation has been executed for improving particulate matter (PM) pollution in northern China since 2017. This study determined particle size distributions of nitrated phenols (NPs) in personal exposure samples and their associations with biomarkers in saliva and urine from homemakers in rural households of the Fenwei Plain, China. Remarkable reductions of 28.6-66.3% and 52.2-82.4% on PMs and total quantified NPs, respectively, were found with the substitutions of raw coal chunk and biomass by advanced clean coal. 4-Nitroguaiacol (4NG) showed the largest reductions of 81.2% among individual NP. In addition, the clean coal efficiently reduced interleukin-6 (IL-6) and 8-hydrox-2'-deoxyguanosine (8-OHdG) in the urine and saliva by 12-72%. Furthermore, significant positive correlations between urinary 8-OHdG with most of NPs in all particle sizes, urinary IL-6 with 4NG for particles with Dp > 2.5 µm and Dp = 0.25-1.0 µm and salivary IL-6 with 4-nitrocatechol and 4-methyl-5-nitrocatechol for particles with Dp > 2.5 µm, Dp = 0.5-1.0 µm, and Dp < 0.25 µm were observed but not for salivary 8-OHdG or PMs. The results provide scientific support for the clean energy reformation and demonstrate the strong particle size dependence between NPs and biomarkers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , China , Carvão Mineral , Monitoramento Ambiental , Calefação , Nitratos , Tamanho da Partícula , Material Particulado/análise , Fenóis
6.
Environ Res ; 209: 112792, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093308

RESUMO

Particulate matter with aerodynamic diameters ≤1 µm (PM1) in the atmosphere, especially that which is emitted from anthropogenic sources, can induce considerable negative effects on the cardiopulmonary system. To investigate the chemical emission characteristics and organic sources in Yuen Long (Hong Kong), both offline and online approaches for PM1 samples were applied by filter-based samplers and a Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM), respectively. The toxicological effects on human A549 lung alveolar epithelial cells were investigated, and associations between cytotoxicity and organic sources and compositions were evaluated. The organics from the Q-ACSM measurement were the largest contributor to submicron aerosols in both seasons of our study, and the mass fraction was higher in winter (60%) than it was in autumn (46%). Regarding organic sources, the mass fraction of hydrocarbon-like organics (HOA) increased from 7% in autumn to 38% in winter, whereas cooking organics (COA) decreased from 30% in autumn to 18% in winter, and oxygenated organics (OOA) decreased from 63% to 45%. Organic compounds contributed more during pollution episodes, and more secondary ions were formed by means of the oxidation process. Oxidative and inflammatory responses in A549 cells were found with PM1 exposures; the differences in chemical compositions resulted in the higher cytotoxicity in winter than autumn. The cooking organic aerosol in residential area was significantly correlated with cell inflammation. Both elemental carbon and specific inorganic ions (SO42- and Mg2+) contributed to the intracellular cytotoxicity. This study demonstrated that specific atmospheric particulate matter chemical properties and sources can trigger distinct cell reactions; the inorganic ions from cooking emissions cannot be disregarded in terms of their pulmonary health risks in residential areas.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Aerossóis/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Células Epiteliais , Humanos , Pulmão , Material Particulado/análise , Material Particulado/toxicidade , Estações do Ano
7.
Environ Res ; 212(Pt C): 113361, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35526582

RESUMO

Solid fuel is the most widely used energy source for cooking and heating in the rural households in developing countries. In this study, emissions from 13 fuel-stove combinations were studied in two typical rural villages in the Fenhe Basin, Shanxi Province, China. This study gathered data on the emission characteristics of particles with an aerodynamic diameter of ≤2.5 µm (PM2.5), organic carbon (OC), elemental carbon (EC), and 21 parent and oxygenated polycyclic aromatic hydrocarbons (pPAHs and oPAHs, respectively); the mechanism of gas formation was also determined. The PM2.5 EFs of biomass burning ranged from 4.11 ± 2.12 to 138 ± 47.2 g/kg, which was higher than that of coal combustion (1.57 ± 0.89 to 4.11 ± 0.63 g/kg). Notably, the average PM2.5 EFs of biomass burning in a traditional stove and elevated kang were 50.9 ± 13.8 and 23.0 ± 3.99 g/kg, respectively, suggesting that the elevated kang had superior emission mitigation. Wood pellet burning in a biomass furnace yielded lower PM2.5 EFs than firewood burning in the biomass furnace, which demonstrated wood pellet combustion's superior emission reduction effect. The relative contribution of OC4 to OC subfractions may be useable as tools for identifying the sources of coal and biomass burning. Regarding PAHs, biomass with abundant lignin pyrolysis produced numerous hydroxyl radicals that were conducive to the release of greater proportions of oPAHs. By contrast, pPAHs had greater relative contributions in coal combustion. Regarding gaseous pollutants, its formation mechanism varied with combustion phase. Emission differences between the two phases were mainly determined by the relative contributions of volatile C/N and char. Clarifying the pollutant formation mechanism can better guide the implementation of emission control from household solid fuel combustion.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Carbono/análise , China , Carvão Mineral/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
8.
Environ Res ; 212(Pt C): 113357, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35580669

RESUMO

A vehicular emission study was conducted in the longest inner-city tunnel in Xi'an, northwestern China in four time periods (I: 07:30-10:30, II: 11:00-14:00, III: 16:30-19:30, and IV: 20:00-23:00 LST). A sum of 40 PAHs, including parent (p-PAHs), alkylated (a-PAHs), and oxygenated (o-PAHs) in fine particulate matter (PM2.5) were quantified. The relationships between the PAHs and the formation of reactive oxygen species (ROS) were also studied. The average total quantified PAHs concentration was 236.3 ± 48.3 ng m-3. The p-PAHs were found to be the most dominated group, accounting for an average of 88.1% of the total quantified PAHs, followed by a-PAHs (6.1%) and o-PAHs (5.8%). On the base of the number of aromatic rings, the groups of ≤5 rings (92.5 ± 1.2%) had higher fractions than the high ones (≥6 rings, 7.5 ± 1.2%) for pPAHs. Diurnal variations of PAHs subgroups exhibited the highest levels in Period III, consistent with the largest traffic counts in evening rush hours. However, less reduction of few PAHs in the night period demonstrates that the emissions of compressed natural gas (CNG) and methanol-fueled vehicles cannot be ignored while their contribution increased. High ROS activity levels were observed in the traffic-dominated samples, implying the potential oxidative damages to humans. Additionally, diurnal variation of the ROS activity was consistent with the total quantified PAHs and toxic equivalency of benzo[a]pyrene. Good correlations (R > 0.6, p < 0.05) were seen between individual groups of PAHs (especially for 3-5 rings p-PAHs, 4 rings a-PAHs, and 2-3 rings o-PAHs) and ROS activity, supporting that the vehicular emitted PAHs possibly initiate oxidative stress. The multiple linear regression analysis further illustrated that chrysene contributed the highest (25.0%) to ROS activity. In addition to highlighting the potential hazards to the PAHs from the vehicular emission, their roles to mitigate the health effects by formations of ROS were firstly reported in northwestern China.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , China , Monitoramento Ambiental , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Espécies Reativas de Oxigênio/análise , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
9.
J Environ Manage ; 320: 115822, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933878

RESUMO

Residential solid fuel combustion (RSFC) is an important source of PM2.5. Here we investigate the cytotoxicity of primarily emitted and photochemically aged PM2.5 to A549 cells. Owing to the formation of water-soluble ions and organics (e.g., oPAHs and nPAHs), emission factors of PM2.5 were increased by 44.4% on average after 7-day equivalent photochemical aging, which greatly altered chemical profiles of freshly emitted PM2.5. Consequently, the cytotoxicity varied with aging duration that 2-day and 7-day aged PM2.5 induced 22.5% and 35.1%, respectively, higher levels of reactive oxygen species than primary emissions. Similar increases were also observed for multi-cytotoxicity. Correlation analysis and western blot results collectively confirmed HO-1/Nrf-2 signaling pathway dominated the cytotoxicity of aged PM2.5 from RSFC, which was regulated by the enhanced o-PAHs and n-PAHs during photochemical aging. Thus, aged and secondary aerosol exposure needs to be paid more attention due to the enhanced cytotoxicity and the vast crowd involved.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , China , Monitoramento Ambiental/métodos , Calefação , Humanos , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
10.
Ecotoxicol Environ Saf ; 224: 112680, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34418851

RESUMO

PM2.5 Road dust samples were collected from 10 representative cities in southern and northern China for examination of chemical components and oxidative stress levels in A549 cells. Downtown road dust was abundance of heavy metals, EC and PAHs compared to nondowntown road dust. Source apportionment also revealed the relative higher contribution of vehicle emission to downtown (35.8%) than nondowntown road dust (25.5%). Consequently, downtown road dust induced much higher intracellular reactive oxidative species (ROS) levels than that from nondowntown (p < 0.05). This study highlights that the ROS-inducing capacity of road dust in China is lower at lower latitudes, which resulted in a significantly higher ROS-inducing capacity of road dust from northern cities than southern ones. Hotspot analysis demonstrated that heavy metals (i.e., Cr, Zn, Cu and Pb) in road dust were the most closely associated with ROS production in A549 cells. Vehicle emission and combustion emission in road dust were identified to be correlated with cellular ROS production. The findings highlight the ROS-inducing effect of PM2.5 road dust and also serve as a reference to make the targeted solutions for urban road dust pollution control, especially from a public health perspective.

11.
Ecotoxicol Environ Saf ; 214: 112104, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33677381

RESUMO

BACKGROUND: The health effects of heavy solid fuel use in winter in rural China are of concern. The effects of air pollution resulting from domestic solid fuel combustion in rural households on rural homemakers' biomarkers were revealed in this study. METHODS: In total, 75 female homemakers from rural areas of Guanzhong Basin, the Fenwei Plain, People's Republic of China, were randomly selected and divided into three groups (biomass users, coal users, and nonusers of solid fuel user [control group]). The differences in biological indicators, including 8-hydrox-2'-deoxyguanosine (8-OHdG), interlukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in urine samples as well as blood pressure (BP, including systolic BP [SBP] and diastolic BP [DBP]) and heart rate (HR) among the groups in winter and summer were investigated using statistical analysis. RESULTS: IL-6, 8-OHdG, HR, SBP, and DBP were significantly higher in winter than in summer (P < 0.05) owing to the poor air quality resulted from the excessive use of solid fuels in winter. Significant seasonal differences in 8-OHdG were observed for both coal and biomass users. After the influence of confounders was removed, only IL-6 levels in the urine of solid fuel users were significantly higher than that of the control group. CONCLUSIONS: IL-6 is a sensitive biomarker representing inflammatory responses to particulate matter emitted through household solid fuel combustion. Locally, excessive use of solid fuels in winter posed serious PM2.5 pollution in this area and adverse effects on inflammatory biomarkers in these rural homemakers and induced DNA damage related to oxidative stress.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Culinária , Interleucina-6/urina , Material Particulado , 8-Hidroxi-2'-Desoxiguanosina/urina , Adulto , Idoso , Biomarcadores/urina , Pressão Sanguínea , China , Feminino , Frequência Cardíaca , Humanos , Pessoa de Meia-Idade , Distribuição Aleatória , População Rural , Fator de Necrose Tumoral alfa/urina
12.
Toxicol Appl Pharmacol ; 403: 115154, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32710959

RESUMO

Exposure to air pollution is associated with the incidence of respiratory diseases. The present study evaluated the pulmonary vascular system injury by chronic real-time particulate matter (PM10) exposure and investigated the underlying mechanisms. Rats were exposed to PM10 or filtered air for 2 to 4 months using a whole body exposure system, and intraperitoneally injected with the MEK1/2 inhibitor U0126. Right heart catheterization and myography were performed to detect lung function and pulmonary vascular reactivity, respectively. Western blotting, qRT-PCR, enzyme-linked immunosorbent assay and histological analyses were used to detect the effects and mechanisms by which PM10 exposure-induced pulmonary vascular dysfunction. Functional experiment results showed that PM10 exposure increased the pulmonary artery pressure of rats and caused endothelin B receptor (ETBR)-mediated pulmonary arteriole hyperreactivity. U0126 significantly rescued these pathological changes. PM10 exposure upregulated the contractile ETBR of pulmonary arteriolar smooth muscle, and damaged pulmonary artery endothelial cells to induce the release of more endothelin 1 (ET-1). The upregulated ETBR bound to increased ET-1 induced pulmonary arteriolar hyperresponsiveness and remodeling. U0126 inhibited the PM10 exposure-induced upregulation of ETBR in pulmonary arteriole, ETBR-mediated pulmonary arterial hyperresponsiveness and vascular remodeling. In conclusion, chronic real-time particulate matter exposure can activate the ERK1/2 signaling, thereby inducing the upregulation of contractile ETBR in pulmonary arteriole, which may be involved in pulmonary arteriole hyperresponsiveness and remodeling in rats. These findings provide new mechanistic evidence of PM10 exposure-induced respiratory diseases, and a new possible target for treatment.


Assuntos
Arteríolas/efeitos dos fármacos , Butadienos/farmacologia , Pulmão/irrigação sanguínea , Nitrilas/farmacologia , Material Particulado/toxicidade , Receptor de Endotelina B/metabolismo , Remodelação Vascular/efeitos dos fármacos , Animais , Esquema de Medicação , Endotelina-1/genética , Endotelina-1/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina B/genética
13.
Environ Sci Technol ; 54(22): 14482-14493, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33138382

RESUMO

Coal combustion emits a large amount of PM2.5 (particulate matters with aerodynamic diameters less than 2.5 µm) and causes adverse damages to the cardiovascular system. In this study, emissions from anthracite and bitumite were examined. Red mud (RM) acts as an additive and is mixed in coal briquettes with a content of 0-10% as a single variable to demonstrate the reduction in the PM2.5 emissions. Burnt in a regulated combustion chamber, the 10% RM-containing bitumite and anthracite briquettes showed 52.3 and 18.6% reduction in PM2.5, respectively, compared with their chunk coals. Lower cytotoxicity (in terms of oxidative stresses and inflammation factors) was observed for PM2.5 emitted from the RM-containing briquettes than those from non-RM briquettes, especially for the bitumite groups. Besides, the results of western blotting illustrated that the inhibition of NF-κB and MAPK was the potential pathway for the reduction of cytokine levels by the RM addition. The regression analyses further demonstrated that the reduction was attributed to the lower emissions of transition metals (i.e., Mn) and PAHs (i.e., acenaphthene). This pilot study provides solid evidence for the cytotoxicity to vascular smooth muscle cells induced by PM2.5 from coal combustion and potential solutions for reducing the emission of toxic pollutants from human health perspectives.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Poluentes Atmosféricos/análise , China , Carvão Mineral/análise , Monitoramento Ambiental , Humanos , Músculo Liso Vascular/química , Material Particulado/análise , Projetos Piloto
14.
Environ Sci Technol ; 54(7): 3803-3813, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32150391

RESUMO

Brown carbon (BrC), an aerosol carbonaceous matter component, impacts atmospheric radiation and global climate because of its absorption in the near-ultraviolet-visible region. Simultaneous air sampling was conducted in two megacities of Xi'an (northern) and Hong Kong (southern) in China in winter of 2016-2017. The aim of this study is to determine and characterize the BrC compounds in collected filter samples. Characteristic absorption peaks corresponding to aromatic C-C stretching bands, organo-nitrates, and C═O functional groups were seen in spectra of Xi'an samples, suggesting that the BrC was derived from freshly smoldering biomass and coal combustion as well as aqueous formation of anthropogenic secondary organic carbon. In Hong Kong, the light absorption of secondary BrC accounted for 76% of the total absorbances of BrC. The high abundance of strong C═O groups, biogenic volatile organic compounds (BVOCs) and atmospheric oxidants suggest secondary BrC was likely formed from photochemical oxidation of BVOCs in Hong Kong. Several representative BrC molecular markers were detected using Fourier transform ion cyclotron resonance mass spectrometry and their absorption properties were simulated by quantum chemistry. The results demonstrate that light absorption capacities of secondary anthropogenic BrC with nitro-functional groups were stronger than those of biogenic secondary BrC and anthropogenic primary BrC.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis , China , Cidades , Carvão Mineral , Monitoramento Ambiental , Hong Kong , Material Particulado
15.
Ecotoxicol Environ Saf ; 191: 110145, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954214

RESUMO

Arsenic (As) and antimony (Sb) are listed as the priority pollutants by the U.S. Environmental Protection Agency (EPA) and the European Union (EU) due to their toxicity and potential carcinogenicity. It is necessary to investigate their adsorption over soil as such a behavior affects their mobility and bioavailability. In this study, the effect of pH on the adsorption of As(V) and Sb(V) by the black soil was investigated with three systems: the Single system, Binary system, and Sequence system. The operating pH was set at 4.0, 7.0 and 10.0. Based on the Langmuir isothermal and the pseudo-second-order kinetic models, the adsorption for As(V) was always better than Sb(V) in the whole pH range; the best adsorption performance for the two sorbates was achieved at pH of 4.0, followed by 7.0 and 10.0 in the three systems. The reasons could be that the atomic radius of arsenic is smaller than that of antimony, and the positively charged functional groups carried by the inorganic colloids in the soil contributed to binding with the negatively charged As(V)/Sb(V). A lower pH promoted the inorganic colloids to carry more positive charges. Compared to Single system, the maximum adsorption capacity (qm) and the initial adsorption rates (k2qe,cal2) of As(V) and Sb(V) in Binary system decreased obviously, suggesting competitive adsorption occurred when As(V) and Sb(V) coexisted. The findings of this workimprove the understanding of As(V)/Sb(V) adsorption behavior in soil under different situations and would facilitate a comprehensive evaluation on the risk assessment of arsenic and antimony.


Assuntos
Antimônio/análise , Arsênio/análise , Poluentes do Solo/análise , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Solo/química
16.
Ecotoxicol Environ Saf ; 181: 34-42, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31158721

RESUMO

Antimony (Sb) is listed as a priority pollutant by European Union and U.S. Environmental Protection Agency. However, reports on its environmental behavior, particularly the sorption process in soil are still limited. In this paper, Sb(V) was selected as the sorbate and the black soil as the sorbent. The initial sorption rate (k2qe,cal2) was calculated to be 0.1254 mg g-1∙min-1 and the maximum sorption amount (qm) 57.33 mg g-1. Once the dissolved organic matter (DOM) was removed from the soil, the values of k2qe,cal2 and qm went down to 0.1066 mg g-1∙min-1 and 19.01 mg g-1, respectively. These results suggested that the existence of DOM significantly influenced the mass transfer rate and sorption amount of Sb(V) in soil. In order to find out the reason why DOM exerted such an influence, the binding interaction mechanism between Sb(V) and DOM was investigated under different pH values. The protein-like and humic-like substances as well as the functional groups of CO, phenol hydroxyl, C-O, C-H, C-X and sulfur/phosphorus contributed to the formation of DOM-Sb(V)-complexes under pH of 7.0, in which the humic-like substance and the functional groups containing oxygen showed higher binding affinity for Sb(V) than protein-like substance and other functional groups, respectively. The protein-like substance and some functional groups disappeared under pH of 4.0 and 10.0. Alkaline condition resulted in a bigger impact on reducing the number of functional groups than acid condition. It can be concluded that the strongest binding interaction occurred at pH of 7.0 then followed by 4.0 and 10.0. This paper might be helpful to further studying the environmental behavior of Sb(V) in soil.


Assuntos
Antimônio/análise , Substâncias Húmicas/análise , Poluentes do Solo/análise , Solo/química , Adsorção , Antimônio/química , Concentração de Íons de Hidrogênio , Poluentes do Solo/química , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Environ Toxicol ; 34(10): 1094-1104, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31199065

RESUMO

Fine particulate matter (PM2.5 ) is an important environmental risk factor for cardiovascular diseases. However, little is known about the effects of PM2.5 on arteries. The present study investigated whether PM2.5 alters 5-hydroxytryptamine (5-HT) receptor expression and inflammatory mediators on rat mesenteric arteries, and examined the underlying mechanisms. Isolated rat mesenteric arteries segments were cultured with PM2.5 in the presence or absence of ERK1/2, JNK, and p38 pathway inhibitors. Contractile reactivity was monitored by a sensitive myograph. The expression of 5-HT2A/1B receptors and inflammatory mediators were studied by a real-time polymerase chain reaction and/or by immunohistochemistry. The phosphorylation of mitogen-activated protein kinases (MAPK) pathway was detected by Western blot. Compared with the fresh or culture alone groups, 1.0 µg/mL PM2.5 cultured for 16 hours significantly enhanced contractile response induced by 5-HT and increased 5-HT2A receptor mRNA and protein expressions, indicating PM2.5 upregulates 5-HT2A receptor. SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor) significantly decreased PM2.5 -induced elevated contraction and mRNA and protein expression of 5-HT2A receptor. Cultured with PM2.5 significantly increased the mRNA expression of inflammatory mediators (NOS2, IL-1ß, and TNF-α), while SB203580 decreased mRNA expression level of NOS2, IL-1ß, and TNF-α. SP600125 (JNK inhibitor) decreased mRNA expression level of TNF-α and IL-1ß. After PM2.5 exposure, the phosphorylation of p38 and ERK1/2 protein were increased. SB203580 and U0126 inhibited the PM2.5 caused increased phosphorylation protein of p38 and ERK1/2. In conclusion, PM2.5 induces inflammatory-mediated MAPK pathway in artery which subsequently results in enhanced vascular contraction responding to 5-HT via the upregulated 5-HT2A receptors.


Assuntos
Artérias Mesentéricas/imunologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , Material Particulado/toxicidade , Receptor 5-HT2A de Serotonina/imunologia , Animais , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Artérias Mesentéricas/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/genética , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/genética , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
18.
Environ Geochem Health ; 41(5): 1939-1951, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30739235

RESUMO

The Chinese Gridded Industrial Pollutants Emission and Residue Model (ChnGIPERM) was used to investigate potential fractionation effects and atmospheric transport of polychlorinated biphenyls (PCBs) derived from single-source emissions in China. Modeling the indicative PCBs (CB28, CB101, CB153, and CB180) revealed spatiotemporal trends in atmospheric transport, gas/particle partitioning, and primary and secondary fractionation effects. These included the inference that the Westerlies and East Asian monsoons affect atmospheric transport patterns of PCBs by influencing the atmospheric transport time (ATT). In this study, dispersion pathways with long ATTs in winter tended to have short ones in summer and vice versa. The modeled partitioning of PCB congeners between gas and particles was mainly controlled by temperature, which can further influence the ATT. The potential for primary and secondary fractionation was explored by means of numerical simulations with single-source emissions. Within ChnGIPERM, these phenomena were mainly controlled by the temperature and soil organic carbon content. The secondary fractionation of PCBs is a slow process, with model results suggesting a timescale of several decades.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Modelos Teóricos , Bifenilos Policlorados/análise , Poluentes Atmosféricos/química , Fracionamento Químico , China , Bifenilos Policlorados/química , Estações do Ano , Poluentes do Solo/análise , Poluentes do Solo/química , Temperatura , Fatores de Tempo
19.
Environ Geochem Health ; 40(2): 849-863, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29019007

RESUMO

Air pollutant measurement and respiratory inflammatory tests were conducted at a junior secondary school in Xi'an, Northwestern China. Hazardous substances including particulate matters (PMs), black carbon (BC) and particle-bounded polycyclic aromatic hydrocarbons (PAHs) were quantified both indoors and outdoors of the school. Source characterization with organic tracers and particle-size distribution demonstrated that the school's air was mostly polluted by combustion emissions from the surrounding environment. The evaluation of health assessment related to air quality was conducted by two methods, including potential risk estimation of air pollutants and direct respiratory inflammatory test. The incremental lifetime cancer risks associated with PAHs were estimated and were 1.62 × 10-6 and 2.34 × 10-6, respectively, for indoor and outdoor fine PMs. Both the values exceeded the threshold value of 1 × 10-6, demonstrating that the carcinogenic PAHs are a health threat to the students. Respiratory inflammatory responses of 50 students who studied in the sample classroom were examined with a fractional exhaled nitric oxide (FeNO) test, with the aid of health questionnaires. The average FeNO concentration was 17.4 ± 8.5 ppb, which was slightly lower than the recommended level of 20 ppb established by the American Thoracic Society for children. However, a wide distribution and 6% of the values were > 35 ppb, suggesting that the potentials were still high for eosinophilic inflammation and responsiveness to corticosteroids. A preliminary interpretation of the relationship between air toxins and respiratory inflammatory response demonstrated the high exposure cancer risks and inflammatory responses of the students to PMs in the city.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Material Particulado/análise , Pneumonia/induzido quimicamente , Saúde da População , Instituições Acadêmicas , Adolescente , Corticosteroides/uso terapêutico , Testes Respiratórios , Dióxido de Carbono/análise , Carcinógenos/análise , Carcinógenos/toxicidade , Criança , China , Eosinófilos/citologia , Feminino , Humanos , Masculino , Neoplasias/induzido quimicamente , Óxido Nítrico/análise , Material Particulado/toxicidade , Pneumonia/tratamento farmacológico , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Fuligem/análise , Fuligem/toxicidade , Inquéritos e Questionários
20.
Environ Sci Technol ; 51(11): 6288-6297, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28467843

RESUMO

Mn3O4, FeMnOx, and FeOx catalysts synthesized via a solvothermal method were employed for catalytic oxidation of methyl-ethyl-ketone (MEK) at low temperature. Mn3O4 with sphere-like morphology exhibited the highest activity for MEK oxidation, over which MEK was completely oxidized to CO2 at 200 °C, and this result can be comparable to typical noble metal loaded catalysts. The activation energy of MEK over Mn3O4 (30.8 kJ/mol) was much lower than that of FeMnOx (41.5 kJ/mol) and FeOx (47.8 kJ/mol). The dominant planes, surface manganese species ratio, surface-absorbed oxygen, and redox capability played important roles in the catalytic activities of catalysts, while no significant correlation was found between specific surface area and MEK removal efficiency. Mn3O4 showed the highest activity, accounting for abundant oxygen vacancies, low content of surface Mn4+ and strong reducibility. The oxidation of MEK to CO2 via an intermediate of diacetyl is a reaction pathway on Mn3O4 catalyst. Due to high efficiency and low cost, sphere-shaped Mn3O4 is a promising catalyst for VOCs abatement.


Assuntos
Compostos de Manganês , Óxidos , Temperatura , Catálise , Oxirredução , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA