Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Transl Med ; 22(1): 190, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383458

RESUMO

BACKGROUND: Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC. METHODS: Participants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials. RESULTS: A total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression-based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1. CONCLUSIONS: This DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy. TRIAL REGISTRATION: CheckMate 026; NCT02041533, registered January 22, 2014. CheckMate 227; NCT02477826, registered June 23, 2015.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/patologia , Antígeno B7-H1 , Biomarcadores Tumorais
2.
Cancer Cell Int ; 23(1): 291, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001424

RESUMO

BACKGROUND: Lack of Schlafen family member 11 (SLFN11) expression has been recently identified as a dominant genomic determinant of response to DNA damaging agents in numerous cancer types. Thus, several strategies aimed at increasing SLFN11 are explored to restore chemosensitivity of refractory cancers. In this study, we examined various approaches to elevate SLFN11 expression in breast cancer cellular models and confirmed a corresponding increase in chemosensitivity with using the most successful efficient one. As oncogenic transcriptomic downregulation is often driven by methylation of the promotor region, we explore the demethylation effect of 5-aza-2'-deoxycytidine (decitabine), on the SLFN11 gene. Since SLFN11 has been reported as an interferon inducible gene, and interferon is secreted during an active anti-tumor immune response, we investigated the in vitro effect of IFN-γ on SLFN11 expression in breast cancer cell lines. As a secondary approach to pick up cross talk between immune cells and SLFN11 expression we used indirect co-culture of breast cancer cells with activated PBMCs and evaluated if this can drive SLFN11 upregulation. Finally, as a definitive and specific way to modulate SLFN11 expression we implemented SLFN11 dCas9 (dead CRISPR associated protein 9) systems to specifically increase or decrease SLFN11 expression. RESULTS: After confirming the previously reported correlation between methylation of SLFN11 promoter and its expression across multiple cell lines, we showed in-vitro that decitabine and IFN-γ could increase moderately the expression of SLFN11 in both BT-549 and T47D cell lines. The use of a CRISPR-dCas9 UNISAM and KRAB system could increase or decrease SLFN11 expression significantly (up to fivefold), stably and specifically in BT-549 and T47D cancer cell lines. We then used the modified cell lines to quantify the alteration in chemo sensitivity of those cells to treatment with DNA Damaging Agents (DDAs) such as Cisplatin and Epirubicin or DNA Damage Response (DDRs) drugs like Olaparib. RNAseq was used to elucidate the mechanisms of action affected by the alteration in SLFN11 expression. In cell lines with robust SLFN11 promoter methylation such as MDA-MB-231, no SLFN11 expression could be induced by any approach. CONCLUSION: To our knowledge this is the first report of the stable non-lethal increase of SLFN11 expression in a cancer cell line. Our results show that induction of SLFN11 expression can enhance DDA and DDR sensitivity in breast cancer cells and dCas9 systems may represent a novel approach to increase SLFN11 and achieve higher sensitivity to chemotherapeutic agents, improving outcome or decreasing required drug concentrations. SLFN11-targeting therapies might be explored pre-clinically to develop personalized approaches.

3.
J Transl Med ; 20(1): 442, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180904

RESUMO

BACKGROUND: Advances in our understanding of the tumor microenvironment have radically changed the cancer field, highlighting the emerging need for biomarkers of an active, favorable tumor immune phenotype to aid treatment stratification and clinical prognostication. Numerous immune-related gene signatures have been defined; however, their prognostic value is often limited to one or few cancer types. Moreover, the area of non-coding RNA as biomarkers remains largely unexplored although their number and biological roles are rapidly expanding. METHODS: We developed a multi-step process to identify immune-related long non-coding RNA signatures with prognostic connotation in multiple TCGA solid cancer datasets. RESULTS: Using the breast cancer dataset as a discovery cohort we found 2988 differentially expressed lncRNAs between immune favorable and unfavorable tumors, as defined by the immunologic constant of rejection (ICR) gene signature. Mapping of the lncRNAs to a coding-non-coding network identified 127 proxy protein-coding genes that are enriched in immune-related diseases and functions. Next, we defined two distinct 20-lncRNA prognostic signatures that show a stronger effect on overall survival than the ICR signature in multiple solid cancers. Furthermore, we found a 3 lncRNA signature that demonstrated prognostic significance across 5 solid cancer types with a stronger association with clinical outcome than ICR. Moreover, this 3 lncRNA signature showed additional prognostic significance in uterine corpus endometrial carcinoma and cervical squamous cell carcinoma and endocervical adenocarcinoma as compared to ICR. CONCLUSION: We identified an immune-related 3-lncRNA signature with prognostic connotation in multiple solid cancer types which performed equally well and in some cases better than the 20-gene ICR signature, indicating that it could be used as a minimal informative signature for clinical implementation.


Assuntos
Carcinoma de Células Escamosas , RNA Longo não Codificante , Neoplasias do Colo do Útero , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral , Neoplasias do Colo do Útero/genética
4.
Nat Commun ; 14(1): 6328, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816864

RESUMO

Metabolic reprogramming is one of the hallmarks of tumorigenesis. Here, we show that nuclear myosin 1 (NM1) serves as a key regulator of cellular metabolism. NM1 directly affects mitochondrial oxidative phosphorylation (OXPHOS) by regulating mitochondrial transcription factors TFAM and PGC1α, and its deletion leads to underdeveloped mitochondria inner cristae and mitochondrial redistribution within the cell. These changes are associated with reduced OXPHOS gene expression, decreased mitochondrial DNA copy number, and deregulated mitochondrial dynamics, which lead to metabolic reprogramming of NM1 KO cells from OXPHOS to aerobic glycolysis.This, in turn, is associated with a metabolomic profile typical for cancer cells, namely increased amino acid-, fatty acid-, and sugar metabolism, and increased glucose uptake, lactate production, and intracellular acidity. NM1 KO cells form solid tumors in a mouse model, suggesting that the metabolic switch towards aerobic glycolysis provides a sufficient carcinogenic signal. We suggest that NM1 plays a role as a tumor suppressor and that NM1 depletion may contribute to the Warburg effect at the onset of tumorigenesis.


Assuntos
Glicólise , Fosforilação Oxidativa , Camundongos , Animais , Glicólise/fisiologia , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica/metabolismo , Miosinas/metabolismo
5.
Nat Med ; 29(5): 1273-1286, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37202560

RESUMO

The lack of multi-omics cancer datasets with extensive follow-up information hinders the identification of accurate biomarkers of clinical outcome. In this cohort study, we performed comprehensive genomic analyses on fresh-frozen samples from 348 patients affected by primary colon cancer, encompassing RNA, whole-exome, deep T cell receptor and 16S bacterial rRNA gene sequencing on tumor and matched healthy colon tissue, complemented with tumor whole-genome sequencing for further microbiome characterization. A type 1 helper T cell, cytotoxic, gene expression signature, called Immunologic Constant of Rejection, captured the presence of clonally expanded, tumor-enriched T cell clones and outperformed conventional prognostic molecular biomarkers, such as the consensus molecular subtype and the microsatellite instability classifications. Quantification of genetic immunoediting, defined as a lower number of neoantigens than expected, further refined its prognostic value. We identified a microbiome signature, driven by Ruminococcus bromii, associated with a favorable outcome. By combining microbiome signature and Immunologic Constant of Rejection, we developed and validated a composite score (mICRoScore), which identifies a group of patients with excellent survival probability. The publicly available multi-omics dataset provides a resource for better understanding colon cancer biology that could facilitate the discovery of personalized therapeutic approaches.


Assuntos
Biomarcadores Tumorais , Neoplasias do Colo , Humanos , Estudos de Coortes , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Transcriptoma , Microambiente Tumoral
6.
J Exp Clin Cancer Res ; 41(1): 199, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690832

RESUMO

BACKGROUND: Large immunogenomic analyses have demonstrated the prognostic role of the functional orientation of the tumor microenvironment in adult solid tumors, this variable has been poorly explored in the pediatric counterpart. METHODS: We performed a systematic analysis of public RNAseq data (TARGET) for five pediatric tumor types (408 patients): Wilms tumor (WLM), neuroblastoma (NBL), osteosarcoma (OS), clear cell sarcoma of the kidney (CCSK) and rhabdoid tumor of the kidney (RT). We assessed the performance of the Immunologic Constant of Rejection (ICR), which captures an active Th1/cytotoxic response. We also performed gene set enrichment analysis (ssGSEA) and clustered more than 100 well characterized immune traits to define immune subtypes and compared their outcome. RESULTS: A higher ICR score was associated with better survival in OS and high risk NBL without MYCN amplification but with poorer survival in WLM. Clustering of immune traits revealed the same five principal modules previously described in adult tumors (TCGA). These modules divided pediatric patients into six immune subtypes (S1-S6) with distinct survival outcomes. The S2 cluster showed the best overall survival, characterized by low enrichment of the wound healing signature, high Th1, and low Th2 infiltration, while the reverse was observed in S4. Upregulation of the WNT/Beta-catenin pathway was associated with unfavorable outcomes and decreased T-cell infiltration in OS. CONCLUSIONS: We demonstrated that extracranial pediatric tumors could be classified according to their immune disposition, unveiling similarities with adults' tumors. Immunological parameters might be explored to refine diagnostic and prognostic biomarkers and to identify potential immune-responsive tumors.


Assuntos
Neoplasias Ósseas , Neuroblastoma , Osteossarcoma , Adulto , Criança , Humanos , Neuroblastoma/genética , Prognóstico , Microambiente Tumoral/genética
7.
NPJ Genom Med ; 7(1): 10, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169154

RESUMO

Clinical implementation of pharmacogenomics will help in personalizing drug prescriptions and alleviate the personal and financial burden due to inefficacy and adverse reactions to drugs. However, such implementation is lagging in many parts of the world, including the Middle East, mainly due to the lack of data on the distribution of actionable pharmacogenomic variation in these ethnicities. We analyzed 6,045 whole genomes from the Qatari population for the distribution of allele frequencies of 2,629 variants in 1,026 genes known to affect 559 drugs or classes of drugs. We also performed a focused analysis of genotypes or diplotypes of 15 genes affecting 46 drugs, which have guidelines for clinical implementation and predicted their phenotypic impact. The allele frequencies of 1,320 variants in 703 genes affecting 299 drugs or class of drugs were significantly different between the Qatari population and other world populations. On average, Qataris carry 3.6 actionable genotypes/diplotypes, affecting 13 drugs with guidelines for clinical implementation, and 99.5% of the individuals had at least one clinically actionable genotype/diplotype. Increased risk of simvastatin-induced myopathy could be predicted in ~32% of Qataris from the diplotypes of SLCO1B1, which is higher compared to many other populations, while fewer Qataris may need tacrolimus dosage adjustments for achieving immunosuppression based on the CYP3A5 diplotypes compared to other world populations. Distinct distribution of actionable pharmacogenomic variation was also observed among the Qatari subpopulations. Our comprehensive study of the distribution of actionable genetic variation affecting drugs in a Middle Eastern population has potential implications for preemptive pharmacogenomic implementation in the region and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA