Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(4): E454-E471, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054972

RESUMO

Efficient and accurate methods to estimate insulin sensitivity (SI) and ß-cell function (BCF) are of great importance for studying the pathogenesis and treatment effectiveness of type 2 diabetes (T2D). Existing methods range in sensitivity, input data, and technical requirements. Oral glucose tolerance tests (OGTTs) are preferred because they are simpler and more physiological than intravenous methods. However, current analytical methods for OGTT-derived SI and BCF also range in complexity; the oral minimal models require mathematical expertise for deconvolution and fitting differential equations, and simple algebraic surrogate indices (e.g., Matsuda index, insulinogenic index) may produce unphysiological values. We developed a new insulin secretion and sensitivity (ISS) model for clinical research that provides precise and accurate estimates of SI and BCF from a standard OGTT, focusing on effectiveness, ease of implementation, and pragmatism. This model was developed by fitting a pair of differential equations to glucose and insulin without need of deconvolution or C-peptide data. This model is derived from a published model for longitudinal simulation of T2D progression that represents glucose-insulin homeostasis, including postchallenge suppression of hepatic glucose production and first- and second-phase insulin secretion. The ISS model was evaluated in three diverse cohorts across the lifespan. The new model had a strong correlation with gold-standard estimates from intravenous glucose tolerance tests and insulin clamps. The ISS model has broad applicability among diverse populations because it balances performance, fidelity, and complexity to provide a reliable phenotype of T2D risk.NEW & NOTEWORTHY The pathogenesis of type 2 diabetes (T2D) is determined by a balance between insulin sensitivity (SI) and ß-cell function (BCF), which can be determined by gold standard direct measurements or estimated by fitting differential equation models to oral glucose tolerance tests (OGTTs). We propose and validate a new differential equation model that is simpler to use than current models and requires less data while maintaining good correlation and agreement with gold standards. Matlab and Python code is freely available.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Teste de Tolerância a Glucose , Resistência à Insulina/fisiologia , Secreção de Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Glicemia , Insulina/metabolismo , Glucose , Técnica Clamp de Glucose
2.
J Physiol ; 601(24): 5655-5667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37983196

RESUMO

Pancreatic beta cells secrete insulin in response to plasma glucose. The ATP-sensitive potassium channel (KATP ) links glucose metabolism to islet electrical activity in these cells by responding to increased cytosolic [ATP]/[ADP]. It was recently proposed that pyruvate kinase (PK) in close proximity to beta cell KATP locally produces the ATP that inhibits KATP activity. This proposal was largely based on the observation that applying phosphoenolpyruvate (PEP) and ADP to the cytoplasmic side of excised inside-out patches inhibited KATP . To test the relative contributions of local vs. mitochondrial ATP production, we recorded KATP activity using mouse beta cells and INS-1 832/13 cells. In contrast to prior reports, we could not replicate inhibition of KATP activity by PEP + ADP. However, when the pH of the PEP solutions was not corrected for the addition of PEP, strong channel inhibition was observed as a result of the well-known action of protons to inhibit KATP . In cell-attached recordings, perifusing either a PK activator or an inhibitor had little or no effect on KATP channel closure by glucose, further suggesting that PK is not an important regulator of KATP . In contrast, addition of mitochondrial inhibitors robustly increased KATP activity. Finally, by measuring the [ATP]/[ADP] responses to imposed calcium oscillations in mouse beta cells, we found that oxidative phosphorylation could raise [ATP]/[ADP] even when ADP was at its nadir during the burst silent phase, in agreement with our mathematical model. These results indicate that ATP produced by mitochondrial oxidative phosphorylation is the primary controller of KATP in pancreatic beta cells. KEY POINTS: Phosphoenolpyruvate (PEP) plus adenosine diphosphate does not inhibit KATP activity in excised patches. PEP solutions only inhibit KATP activity if the pH is unbalanced. Modulating pyruvate kinase has minimal effects on KATP activity. Mitochondrial inhibition, in contrast, robustly potentiates KATP activity in cell-attached patches. Although the ADP level falls during the silent phase of calcium oscillations, mitochondria can still produce enough ATP via oxidative phosphorylation to close KATP . Mitochondrial oxidative phosphorylation is therefore the main source of the ATP that inhibits the KATP activity of pancreatic beta cells.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacologia , Piruvato Quinase/metabolismo , Piruvato Quinase/farmacologia , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo
3.
Glia ; 71(2): 205-228, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36093576

RESUMO

The mammalian pituitary gland is a complex organ consisting of hormone-producing cells, anterior lobe folliculostellate cells (FSCs), posterior lobe pituicytes, vascular pericytes and endothelial cells, and Sox2-expressing stem cells. We present single-cell RNA sequencing and immunohistofluorescence analyses of pituitary cells of adult female rats with a focus on the transcriptomic profiles of nonhormonal cell types. Samples obtained from whole pituitaries and separated anterior and posterior lobe cells contained all expected pituitary resident cell types and lobe-specific vascular cell subpopulations. FSCs and pituicytes expressed S100B, ALDOC, EAAT1, ALDH1A1, and VIM genes and proteins, as well as other astroglial marker genes, some common and some cell type-specific. We also found that the SOX2 gene and protein were expressed in ~15% of pituitary cells, including FSCs, pituicytes, and a fraction of hormone-producing cells, arguing against its stem cell specificity. FSCs comprised two Sox2-expressing subclusters; FS1 contained more cells but lower genetic diversity, while FS2 contained proliferative cells, shared genes with hormone-producing cells, and expressed genes consistent with stem cell niche formation, regulation of cell proliferation and stem cell pluripotency, including the Hippo and Wnt pathways. FS1 cells were randomly distributed in the anterior and intermediate lobes, while FS2 cells were localized exclusively in the marginal zone between the anterior and intermediate lobes. These data indicate the identity of the FSCs as anterior pituitary-specific astroglia, with FS1 cells representing differentiated cells equipped for classical FSC roles and FS2 cells exhibiting additional stem cell-like features.


Assuntos
Adeno-Hipófise , Ratos , Feminino , Animais , Adeno-Hipófise/metabolismo , Astrócitos , Células Endoteliais , Células-Tronco , Hormônios/metabolismo , Mamíferos
4.
Am J Physiol Endocrinol Metab ; 324(6): E477-E487, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074988

RESUMO

The standard model for Ca2+ oscillations in insulin-secreting pancreatic ß cells centers on Ca2+ entry through voltage-activated Ca2+ channels. These work in combination with ATP-dependent K+ channels, which are the bridge between the metabolic state of the cells and plasma membrane potential. This partnership underlies the ability of the ß cells to secrete insulin appropriately on a minute-to-minute time scale to control whole body plasma glucose. Though this model, developed over more than 40 years through many cycles of experimentation and mathematical modeling, has been very successful, it has been challenged by a hypothesis that calcium-induced calcium release from the endoplasmic reticulum through ryanodine or inositol trisphosphate (IP3) receptors is instead the key driver of islet oscillations. We show here that the alternative model is in fact incompatible with a large body of established experimental data and that the new observations offered in support of it can be better explained by the standard model.


Assuntos
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Cálcio/metabolismo , Insulina/metabolismo , Sinalização do Cálcio , Secreção de Insulina
5.
Biophys J ; 121(5): 692-704, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131294

RESUMO

Pulsatile insulin secretion by pancreatic beta cells is necessary for tight glucose control in the body. Glycolytic oscillations have been proposed as the mechanism for generating the electrical oscillations underlying pulsatile insulin secretion. The glycolytic enzyme 6-phosphofructokinase-1 (PFK) synthesizes fructose-1,6-bisphosphate (FBP) from fructose-6-phosphate. It has been proposed that the slow electrical and Ca2+ oscillations (periods of 3-5 min) observed in islets result from allosteric feedback activation of PFKM by FBP. Pancreatic beta cells express three PFK isozymes: PFKL, PFKM, and PFKP. A prior study of mice that were engineered to lack PFKM using a gene-trap strategy to delete Pfkm produced a mosaic reduction in global Pfkm expression, but the islets isolated from the mice still exhibited slow Ca2+ oscillations. However, these islets still expressed residual PFKM protein. Thus, to more fully test the hypothesis that beta cell PFKM is responsible for slow islet oscillations, we made a beta-cell-specific knockout mouse that completely lacked PFKM. While PFKM deletion resulted in subtle metabolic changes in vivo, islets that were isolated from these mice continued to exhibit slow oscillations in electrical activity, beta cell Ca2+ concentrations, and glycolysis, as measured using PKAR, an FBP reporter/biosensor. Furthermore, simulations obtained with a mathematical model of beta cell activity shows that slow oscillations can persist despite PFKM loss provided that one of the other PFK isoforms, such as PFKP, is present, even if its level of expression is unchanged. Thus, while we believe that PFKM may be the main regulator of slow oscillations in wild-type islets, PFKP can provide functional redundancy. Our model also suggests that PFKM likely dominates, in vivo, because it outcompetes PFKP with its higher FBP affinity and lower ATP affinity. We thus propose that isoform redundancy may rescue key physiological processes of the beta cell in the absence of certain critical genes.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Fosfofrutoquinase-1 , Animais , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo
6.
Biophys J ; 121(8): 1449-1464, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35300967

RESUMO

ATP-sensitive K+ (K(ATP)) channels were first reported in the ß-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet ß-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in ß-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.


Assuntos
Sinalização do Cálcio , Ilhotas Pancreáticas , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Glucose/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Potenciais da Membrana/fisiologia , Camundongos
7.
Biophys J ; 119(11): 2335-2348, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098866

RESUMO

In mammalian cells, extracellular protons act as orthosteric and allosteric ligands for multiple receptors and channels. The aim of this study is to identify proton sensors in the rat pituitary gland. qRT-PCR analysis indicated the expression of G-protein-coupled receptor 68 gene (Gpr68) and acid-sensing ion channel (ASIC) genes Asic1, Asic2, and Asic4 in anterior pituitary cells and Asic1 and Asic2 in immortalized GH3 pituitary cells. Asic1a and Asic2b were the dominant splice isoforms. Single anterior pituitary cell RNA sequencing and immunocytochemical analysis showed that nonexcitable folliculostellate cells express GPR68 gene and protein, whereas excitable secretory cells express ASIC genes and proteins. Asic1 was detected in all secretory cell types, Asic2 in gonadotrophs, thyrotrophs, and somatotrophs, and Asic4 in lactotrophs. Extracellular acidification activated two types of currents in a concentration-dependent manner: a fast-developing, desensitizing current with an estimated EC50-value of pH 6.7 and a slow-developing, non-desensitizing current that required a higher proton concentration for activation. The desensitizing current was abolished by removal of bath sodium and application of amiloride, a blocker of ASIC channels, whereas the non-desensitizing current was amiloride insensitive and voltage dependent. Activation of both currents increased the excitability of secretory pituitary cells, consistent with their potential physiological relevance in control of voltage-gated calcium influx and calcium-dependent cellular functions.


Assuntos
Canais Iônicos Sensíveis a Ácido , Prótons , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Neurônios/metabolismo , Hipófise/metabolismo , Isoformas de Proteínas/metabolismo , Ratos
8.
Am J Physiol Endocrinol Metab ; 319(2): E410-E426, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663101

RESUMO

Diabetes is a chronic, progressive disease that calls for longitudinal data and analysis. We introduce a longitudinal mathematical model that is capable of representing the metabolic state of an individual at any point in time during their progression from normal glucose tolerance to type 2 diabetes (T2D) over a period of years. As an application of the model, we account for the diversity of pathways typically followed, focusing on two extreme alternatives, one that goes through impaired fasting glucose (IFG) first and one that goes through impaired glucose tolerance (IGT) first. These two pathways are widely recognized to stem from distinct metabolic abnormalities in hepatic glucose production and peripheral glucose uptake, respectively. We confirm this but go beyond to show that IFG and IGT lie on a continuum ranging from high hepatic insulin resistance and low peripheral insulin resistance to low hepatic resistance and high peripheral resistance. We show that IFG generally incurs IGT and IGT generally incurs IFG on the way to T2D, highlighting the difference between innate and acquired defects and the need to assess patients early to determine their underlying primary impairment and appropriately target therapy. We also consider other mechanisms, showing that IFG can result from impaired insulin secretion, that non-insulin-dependent glucose uptake can also mediate or interact with these pathways, and that impaired incretin signaling can accelerate T2D progression. We consider whether hyperinsulinemia can cause insulin resistance in addition to being a response to it and suggest that this is a minor effect.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Glicemia/análise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Progressão da Doença , Jejum , Glucose/biossíntese , Intolerância à Glucose , Teste de Tolerância a Glucose , Humanos , Hiperinsulinismo/fisiopatologia , Incretinas/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/fisiologia , Fígado/metabolismo , Modelos Teóricos , Transdução de Sinais/fisiologia
9.
Am J Physiol Endocrinol Metab ; 319(3): E629-E646, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32776829

RESUMO

Previously, we have used mathematical modeling to gain mechanistic insights into insulin-stimulated glucose uptake. Phosphatidylinositol 3-kinase (PI3K)-dependent insulin signaling required for metabolic actions of insulin also regulates endothelium-dependent production of the vasodilator nitric oxide (NO). Vasodilation increases blood flow that augments direct metabolic actions of insulin in skeletal muscle. This is counterbalanced by mitogen-activated protein kinase (MAPK)-dependent insulin signaling in endothelium that promotes secretion of the vasoconstrictor endothelin-1 (ET-1). In the present study, we extended our model of metabolic insulin signaling into a dynamic model of insulin signaling in vascular endothelium that explicitly represents opposing PI3K/NO and MAPK/ET-1 pathways. Novel NO and ET-1 subsystems were developed using published and new experimental data to generate model structures/parameters. The signal-response relationships of our model with respect to insulin-stimulated NO production, ET-1 secretion, and resultant vascular tone, agree with published experimental data, independent of those used for model development. Simulations of pathological stimuli directly impairing only insulin-stimulated PI3K/Akt activity predict altered dynamics of NO and ET-1 consistent with endothelial dysfunction in insulin-resistant states. Indeed, modeling pathway-selective impairment of PI3K/Akt pathways consistent with insulin resistance caused by glucotoxicity, lipotoxicity, or inflammation predict diminished NO production and increased ET-1 secretion characteristic of diabetes and endothelial dysfunction. We conclude that our mathematical model of insulin signaling in vascular endothelium supports the hypothesis that pathway-selective insulin resistance accounts, in part, for relationships between insulin resistance and endothelial dysfunction. This may be relevant for developing novel approaches for the treatment of diabetes and its cardiovascular complications.


Assuntos
Endotélio Vascular/fisiopatologia , Resistência à Insulina , Modelos Teóricos , Algoritmos , Endotelina-1 , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Músculo Liso Vascular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Vasodilatação/fisiologia
10.
PLoS Comput Biol ; 13(7): e1005643, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708827

RESUMO

The P2X4 receptor (P2X4R) is a member of a family of purinergic channels activated by extracellular ATP through three orthosteric binding sites and allosterically regulated by ivermectin (IVM), a broad-spectrum antiparasitic agent. Treatment with IVM increases the efficacy of ATP to activate P2X4R, slows both receptor desensitization during sustained ATP application and receptor deactivation after ATP washout, and makes the receptor pore permeable to NMDG+, a large organic cation. Previously, we developed a Markov model based on the presence of one IVM binding site, which described some effects of IVM on rat P2X4R. Here we present two novel models, both with three IVM binding sites. The simpler one-layer model can reproduce many of the observed time series of evoked currents, but does not capture well the short time scales of activation, desensitization, and deactivation. A more complex two-layer model can reproduce the transient changes in desensitization observed upon IVM application, the significant increase in ATP-induced current amplitudes at low IVM concentrations, and the modest increase in the unitary conductance. In addition, the two-layer model suggests that this receptor can exist in a deeply inactivated state, not responsive to ATP, and that its desensitization rate can be altered by each of the three IVM binding sites. In summary, this study provides a detailed analysis of P2X4R kinetics and elucidates the orthosteric and allosteric mechanisms regulating its channel gating.


Assuntos
Ativação do Canal Iônico/fisiologia , Ivermectina/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/fisiologia , Trifosfato de Adenosina/metabolismo , Algoritmos , Sítios de Ligação , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cadeias de Markov , Técnicas de Patch-Clamp , Receptores Purinérgicos P2X4/efeitos dos fármacos
11.
J Neurophysiol ; 117(6): 2298-2311, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28228586

RESUMO

Pituitary corticotrophs fire action potentials spontaneously and in response to stimulation with corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), and such electrical activity is critical for calcium signaling and calcium-dependent adrenocorticotropic hormone secretion. These cells typically fire tall, sharp action potentials when spontaneously active, but a variety of other spontaneous patterns have also been reported, including various modes of bursting. There is variability in reports of the fraction of corticotrophs that are electrically active, as well as their patterns of activity, and the sources of this variation are not well understood. The ionic mechanisms responsible for CRH- and AVP-triggered electrical activity in corticotrophs are also poorly characterized. We use electrophysiological measurements and mathematical modeling to investigate possible sources of variability in patterns of spontaneous and agonist-induced corticotroph electrical activity. In the model, variation in as few as two parameters can give rise to many of the types of patterns observed in electrophysiological recordings of corticotrophs. We compare the known mechanisms for CRH, AVP, and glucocorticoid actions and find that different ionic mechanisms can contribute in different but complementary ways to generate the complex time courses of CRH and AVP responses. In summary, our modeling suggests that corticotrophs have several mechanisms at their disposal to achieve their primary function of pacemaking depolarization and increased electrical activity in response to CRH and AVP.NEW & NOTEWORTHY We and others recently demonstrated that the electrical activity and calcium dynamics of corticotrophs are strikingly diverse, both spontaneously and in response to the agonists CRH and AVP. Here we demonstrate this diversity with electrophysiological measurements and use mathematical modeling to investigate its possible sources. We compare the known mechanisms of agonist-induced activity in the model, showing how the context of ionic conductances dictates the effects of agonists even when their target is fixed.


Assuntos
Potenciais de Ação , Corticotrofos/fisiologia , Modelos Neurológicos , Animais , Arginina Vasopressina/metabolismo , Células Cultivadas , Corticotrofos/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Clin Endocrinol (Oxf) ; 87(5): 484-491, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28681942

RESUMO

CONTEXT: Morphological characteristics of the glucose curve during an oral glucose tolerance test (OGTT) (time to peak and shape) may reflect different phenotypes of insulin secretion and action, but their ability to predict diabetes risk is uncertain. OBJECTIVE: To compare the ability of time to glucose peak and curve shape to detect prediabetes and ß-cell function. DESIGN AND PARTICIPANTS: In a cross-sectional evaluation using an OGTT, 145 adults without diabetes (age 42±9 years (mean±SD), range 24-62 years, BMI 29.2±5.3 kg/m2 , range 19.9-45.2 kg/m2 ) were characterized by peak (30 minutes vs >30 minutes) and shape (biphasic vs monophasic). MAIN OUTCOME MEASURES: Prediabetes and disposition index (DI)-a marker of ß-cell function. RESULTS: Prediabetes was diagnosed in 36% (52/145) of participants. Peak>30 minutes, not monophasic curve, was associated with increased odds of prediabetes (OR: 4.0 vs 1.1; P<.001). Both monophasic curve and peak>30 minutes were associated with lower DI (P≤.01). Time to glucose peak and glucose area under the curves (AUC) were independent predictors of DI (adjR2 =0.45, P<.001). CONCLUSION: Glucose peak >30 minutes was a stronger independent indicator of prediabetes and ß-cell function than the monophasic curve. Time to glucose peak may be an important tool that could enhance prediabetes risk stratification.


Assuntos
Teste de Tolerância a Glucose/normas , Estado Pré-Diabético/diagnóstico , Adulto , Área Sob a Curva , Estudos Transversais , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Medição de Risco , Fatores de Tempo , Adulto Jovem
13.
Biophys J ; 110(3): 691-699, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26840733

RESUMO

Metabolism in islet ß-cells displays oscillations that can trigger pulses of electrical activity and insulin secretion. There has been a decades-long debate among islet biologists about whether metabolic oscillations are intrinsic or occur in response to oscillations in intracellular Ca(2+) that result from bursting electrical activity. In this article, the dynamics of oscillatory metabolism were investigated using five different optical reporters. Reporter activity was measured simultaneously with membrane potential bursting to determine the phase relationships between the metabolic oscillations and electrical activity. Our experimental findings suggest that Ca(2+) entry into ß-cells stimulates the rate of mitochondrial metabolism, accounting for the depletion of glycolytic intermediates during each oscillatory burst. We also performed Ca(2+) clamp tests in which we clamped membrane potential with the KATP channel-opener diazoxide and KCl to fix Ca(2+) at an elevated level. These tests confirm that metabolic oscillations do not require Ca(2+) oscillations, but show that Ca(2+) plays a larger role in shaping metabolic oscillations than previously suspected. A dynamical picture of the mechanisms of oscillations emerged that requires the restructuring of contemporary mathematical ß-cell models, including our own dual oscillator model. In the companion article, we modified our model to account for these new data.


Assuntos
Sinalização do Cálcio , Células Secretoras de Insulina/metabolismo , Potenciais da Membrana , Animais , Células Cultivadas , Células Secretoras de Insulina/fisiologia , Canais KATP/metabolismo , Camundongos
14.
Biophys J ; 110(3): 733-742, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26840737

RESUMO

Pancreatic islets respond to elevated blood glucose by secreting pulses of insulin that parallel oscillations in ß-cell metabolism, intracellular Ca(2+) concentration, and bursting electrical activity. The mechanisms that maintain an oscillatory response are not fully understood, yet several models have been proposed. Only some can account for experiments supporting that metabolism is intrinsically oscillatory in ß-cells. The dual oscillator model (DOM) implicates glycolysis as the source of oscillatory metabolism. In the companion article, we use recently developed biosensors to confirm that glycolysis is oscillatory and further elucidate the coordination of metabolic and electrical signals in the insulin secretory pathway. In this report, we modify the DOM by incorporating an established link between metabolism and intracellular Ca(2+) to reconcile model predictions with experimental observations from the companion article. With modification, we maintain the distinguishing feature of the DOM, oscillatory glycolysis, but introduce the ability of Ca(2+) influx to reshape glycolytic oscillations by promoting glycolytic efflux. We use the modified model to explain measurements from the companion article and from previously published experiments with islets.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Potenciais de Ação , Animais , Metabolismo Energético , Glicólise , Humanos , Células Secretoras de Insulina/fisiologia , Modelos Teóricos , Periodicidade
15.
Am J Physiol Endocrinol Metab ; 310(8): E597-E611, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26837808

RESUMO

The regulation of glucagon secretion in the pancreatic α-cell is not well understood. It has been proposed that glucose suppresses glucagon secretion either directly through an intrinsic mechanism within the α-cell or indirectly through an extrinsic mechanism. Previously, we described a mathematical model for isolated pancreatic α-cells and used it to investigate possible intrinsic mechanisms of regulating glucagon secretion. We demonstrated that glucose can suppress glucagon secretion through both ATP-dependent potassium channels (KATP) and a store-operated current (SOC). We have now developed an islet model that combines previously published mathematical models of α- and ß-cells with a new model of δ-cells and use it to explore the effects of insulin and somatostatin on glucagon secretion. We show that the model can reproduce experimental observations that the inhibitory effect of glucose remains even when paracrine modulators are no longer acting on the α-cell. We demonstrate how paracrine interactions can either synchronize α- and δ-cells to produce pulsatile oscillations in glucagon and somatostatin secretion or fail to do so. The model can also account for the paradoxical observation that glucagon can be out of phase with insulin, whereas α-cell calcium is in phase with insulin. We conclude that both paracrine interactions and the α-cell's intrinsic mechanisms are needed to explain the response of glucagon secretion to glucose.


Assuntos
Cálcio/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Somatostatina/metabolismo , Humanos , Modelos Teóricos , Comunicação Parácrina
16.
Biophys J ; 109(2): 439-49, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200880

RESUMO

Recent advances in imaging technology have revealed oscillations of cyclic adenosine monophosphate (cAMP) in insulin-secreting cells. These oscillations may be in phase with cytosolic calcium oscillations or out of phase. cAMP oscillations have previously been modeled as driven by oscillations in calcium, based on the known dependence of the enzymes that generate cAMP (adenylyl cyclase) and degrade it (phosphodiesterase). However, cAMP oscillations have also been reported to occur in the absence of calcium oscillations. Motivated by similarities between the properties of cAMP and metabolic oscillations in pancreatic ß cells, we propose here that in addition to direct control by calcium, cAMP is controlled by metabolism. Specifically, we hypothesize that AMP inhibits adenylyl cyclase. We incorporate this hypothesis into the dual oscillator model for ß cells, in which metabolic (glycolytic) oscillations cooperate with modulation of ion channels and metabolism by calcium. We show that the combination of oscillations in AMP and calcium in the dual oscillator model can account for the diverse oscillatory patterns that have been observed, as well as for experimental perturbations of those patterns. Predictions to further test the model are provided.


Assuntos
AMP Cíclico/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Adenilil Ciclases/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Simulação por Computador , Potenciais da Membrana/fisiologia , Periodicidade , Diester Fosfórico Hidrolases/metabolismo
17.
Pflugers Arch ; 467(4): 713-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24917516

RESUMO

Allosteric modulators of ligand-gated receptor channels induce conformational changes of the entire protein that alter potencies and efficacies for orthosteric ligands, expressed as the half maximal effective concentration (EC50) and maximum current amplitude, respectively. Here, we studied the influence of allostery on channel pore dilation, an issue not previously addressed. Experiments were done using the rat P2X4 receptor expressed in human embryonic kidney 293T cells and gated by adenosine 5'-triphosphate (ATP) in the presence and absence of ivermectin (IVM), an established positive allosteric regulator of this channel. In the absence of IVM, this channel activates and deactivates rapidly, does not show transition from open to dilated states, desensitizes completely with a moderate rate, and recovers only fractionally during washout. IVM treatment increases the efficacy of ATP to activate the channel and slows receptor desensitization during sustained ATP application and receptor deactivation after ATP washout. The rescue of the receptor from desensitization temporally coincides with pore dilation, and the dilated channel can be reactivated after washout of ATP. Experiments with vestibular and transmembrane domain receptor mutants further established that IVM has distinct effects on opening and dilation of the channel pore, the first accounting for increased peak current amplitude and the latter correlating with changes in the EC50 and kinetics of receptor deactivation. The corresponding kinetic (Markov state) model indicates that the IVM-dependent transition from open to dilated state is coupled to receptor sensitization, which rescues the receptor from desensitization and subsequent internalization. Allosterically induced sensitization of P2X4R thus provides sustained signaling during prolonged and repetitive ATP stimulation.


Assuntos
Ativação do Canal Iônico , Receptores Purinérgicos P2X4/química , Regulação Alostérica , Animais , Células HEK293 , Humanos , Ivermectina/química , Ivermectina/farmacologia , Cinética , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
18.
Biophys J ; 106(3): 741-51, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24507615

RESUMO

The mechanism by which glucose induces insulin secretion in ß-cells is fairly well understood. Despite years of research, however, the mechanism of glucagon secretion in α-cells is still not well established. It has been proposed that glucose regulates glucagon secretion by decreasing the conductance of either outward ATP-dependent potassium channels (K(ATP)) or an inward store-operated current (SOC). We have developed a mathematical model based on mouse data to test these hypotheses and found that both mechanisms are possible. Glucose metabolism closes K(ATP) channels, which depolarizes the cell but paradoxically reduces calcium influx by inactivating voltage-dependent calcium and sodium channels and decreases secretion. Glucose metabolism also activates SERCA pumps, which fills the endoplasmic reticulum and hyperpolarizes the cells by reducing the inward current through SOC channels and again suppresses glucagon secretion. We find further that the two mechanisms can combine to account for the nonmonotonic dependence of secretion on glucose observed in some studies, an effect that cannot be obtained with either mechanism alone.


Assuntos
Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Modelos Biológicos , Cálcio/metabolismo , Sinalização do Cálcio , Células Secretoras de Glucagon/fisiologia , Canais KATP/metabolismo , Potenciais da Membrana , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
19.
SIAM J Appl Dyn Syst ; 13(2): 683-703, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25698909

RESUMO

Pancreatic islets exhibit bursting oscillations in response to elevated blood glucose. These oscillations are accompanied by oscillations in the free cytosolic Ca2+ concentration (Cac ), which drives pulses of insulin secretion. Both islet Ca2+ and metabolism oscillate, but there is some debate about their interrelationship. Recent experimental data show that metabolic oscillations in some cases persist after the addition of diazoxide (Dz), which opens K(ATP) channels, hyperpolarizing ß-cells and preventing Ca2+ entry and Ca2+ oscillations. Further, in some islets in which metabolic oscillations were eliminated with Dz, increasing the cytosolic Ca2+ concentration by the addition of KCl could restart the metabolic oscillations. Here we address why metabolic oscillations persist in some islets but not others, and why raising Cac restarts oscillations in some islets but not others. We answer these questions using the dual oscillator model (DOM) for pancreatic islets. The DOM can reproduce the experimental data and shows that the model supports two different mechanisms for slow metabolic oscillations, one that requires calcium oscillations and one that does not.

20.
J Clin Endocrinol Metab ; 109(5): 1361-1370, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37967247

RESUMO

OBJECTIVE: Elevated rates of gluconeogenesis are an early pathogenic feature of youth-onset type 2 diabetes (Y-T2D), but targeted first-line therapies are suboptimal, especially in African American (AA) youth. We evaluated glucose-lowering mechanisms of metformin and liraglutide by measuring rates of gluconeogenesis and ß-cell function after therapy in AA Y-T2D. METHODS: In this parallel randomized clinical trial, 22 youth with Y-T2D-age 15.3 ± 2.1 years (mean ± SD), 68% female, body mass index (BMI) 40.1 ± 7.9 kg/m2, duration of diagnosis 1.8 ± 1.3 years-were randomized to metformin alone (Met) or metformin + liraglutide (Lira) (Met + Lira) and evaluated before and after 12 weeks. Stable isotope tracers were used to measure gluconeogenesis [2H2O] and glucose production [6,6-2H2]glucose after an overnight fast and during a continuous meal. ß-cell function (sigma) and whole-body insulin sensitivity (mSI) were assessed during a frequently sampled 2-hour oral glucose tolerance test. RESULTS: At baseline, gluconeogenesis, glucose production, and fasting and 2-hour glucose were comparable in both groups, though Met + Lira had higher hemoglobin A1C. Met + Lira had a greater decrease from baseline in fasting glucose (-2.0 ± 1.3 vs -0.6 ± 0.9 mmol/L, P = .008) and a greater increase in sigma (0.72 ± 0.68 vs -0.05 ± 0.71, P = .03). The change in fractional gluconeogenesis was similar between groups (Met + Lira: -0.36 ± 9.4 vs Met: 0.04 ± 12.3%, P = .9), and there were no changes in prandial gluconeogenesis or mSI. Increased glucose clearance in both groups was related to sigma (r = 0.63, P = .003) but not gluconeogenesis or mSI. CONCLUSION: Among Y-T2D, metformin with or without liraglutide improved glycemia but did not suppress high rates of gluconeogenesis. Novel therapies that will enhance ß-cell function and target the elevated rates of gluconeogenesis in Y-T2D are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA