Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638710

RESUMO

Organization of intracellular content is affected by multiple simultaneous processes, including diffusion in a viscoelastic and structured environment, intracellular mechanical work and vibrations. The combined effects of these processes on intracellular organization are complex and remain poorly understood. Here, we studied the organization and dynamics of a free Ca++ probe as a small and mobile tracer in live T cells. Ca++, highlighted by Fluo-4, is localized in intracellular organelles. Inhibiting intracellular mechanical work by myosin II through blebbistatin treatment increased cellular dis-homogeneity of Ca++-rich features in length scale < 1.1 µm. We detected a similar effect in cells imaged by label-free bright-field (BF) microscopy, in mitochondria-highlighted cells and in ATP-depleted cells. Blebbistatin treatment also reduced the dynamics of the Ca++-rich features and generated prominent negative temporal correlations in their signals. Following Guggenberger et al. and numerical simulations, we suggest that diffusion in the viscoelastic and confined medium of intracellular organelles may promote spatial dis-homogeneity and stability of their content. This may be revealed only after inhibiting intracellular mechanical work and related cell vibrations. Our described mechanisms may allow the cell to control its organization via balancing its viscoelasticity and mechanical activity, with implications to cell physiology in health and disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Miosina Tipo II/metabolismo , Organelas/metabolismo , Compostos de Anilina/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Células Jurkat , Xantenos/metabolismo
2.
Immunity ; 35(5): 705-20, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22055681

RESUMO

Receptor-regulated cellular signaling often is mediated by formation of transient, heterogeneous protein complexes of undefined structure. We used single and two-color photoactivated localization microscopy to study complexes downstream of the T cell antigen receptor (TCR) in single-molecule detail at the plasma membrane of intact T cells. The kinase ZAP-70 distributed completely with the TCRζ chain and both partially mixed with the adaptor LAT in activated cells, thus showing localized activation of LAT by TCR-coupled ZAP-70. In resting and activated cells, LAT primarily resided in nanoscale clusters as small as dimers whose formation depended on protein-protein and protein-lipid interactions. Surprisingly, the adaptor SLP-76 localized to the periphery of LAT clusters. This nanoscale structure depended on polymerized actin and its disruption affected TCR-dependent cell function. These results extend our understanding of the mechanism of T cell activation and the formation and organization of TCR-mediated signaling complexes, findings also relevant to other receptor systems.


Assuntos
Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Células Jurkat , Ativação Linfocitária/imunologia , Proteínas de Membrana/metabolismo , Fosfolipase C gama/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/imunologia , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
3.
Eur Biophys J ; 49(6): 409-423, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32666133

RESUMO

Liquid-liquid phase separation is an important mechanism by which eukaryotic cells functionally organize their intracellular content and has been related to cell malignancy and neurodegenerative diseases. These cells also undergo ATP-driven mechanical fluctuations, yet the effect of these fluctuations on the liquid-liquid phase separation remains poorly understood. Here, we employ high-resolution microscopy and atomic force microscopy of live Jurkat T cells to characterize the spectrum of their mechanical fluctuations, and to relate these fluctuations to the extent of nucleoli liquid-liquid phase separation (LLPS). We find distinct fluctuation of the cytoskeleton and of the cell diameter around 110 Hz, which depend on ATP and on myosin activity. Importantly, these fluctuations negatively correlate to nucleoli LLPS. According to a model of cell viscoelasticity, we propose that these fluctuations generate mechanical work that increases intracellular homogeneity by inhibiting LLPS. Thus, active mechanical fluctuations serve as an intracellular regulatory mechanism that could affect multiple pathophysiological conditions.


Assuntos
Actinas/metabolismo , Nucléolo Celular/metabolismo , Separação Celular/métodos , Linfócitos T/citologia , Trifosfato de Adenosina/metabolismo , Humanos , Células Jurkat , Microscopia de Força Atômica , Fatores de Tempo
4.
J Cell Sci ; 129(24): 4548-4562, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27875277

RESUMO

The adapter molecule linker for activation of T cells (LAT) plays a crucial role in forming signaling complexes induced by stimulation of the T cell receptor (TCR). These multi-molecular complexes are dynamic structures that activate highly regulated signaling pathways. Previously, we have demonstrated nanoscale structure in LAT-based complexes where the adapter SLP-76 (also known as LCP2) localizes to the periphery of LAT clusters. In this study, we show that initially LAT and SLP-76 are randomly dispersed throughout the clusters that form upon TCR engagement. The segregation of LAT and SLP-76 develops near the end of the spreading process. The local concentration of LAT also increases at the same time. Both changes require TCR activation and an intact actin cytoskeleton. These results demonstrate that the nanoscale organization of LAT-based signaling complexes is dynamic and indicates that different kinds of LAT-based complexes appear at different times during T cell activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Nanoestruturas/química , Fosfoproteínas/metabolismo , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Fluidez de Membrana , Microscopia , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Immunol Rev ; 251(1): 21-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23278738

RESUMO

Multi-molecular signaling complexes drive the earliest events of immune cell activation via immunoreceptors with unexplained specificity and speed. Fluorescence microscopy has shown that these complexes form microclusters at the plasma membrane of activated T cells upon engagement of their antigen receptors (TCRs). Although crucial for cell function, much remains to be learned about the molecular content, fine structure, formation mechanisms, and function of these microclusters. Recent advancements in super-resolution microscopy have enabled the study of signaling microclusters at the single molecule level with resolution down to approximately 20 nm. These techniques have now helped to characterize the size distributions of signaling clusters at the plasma membrane of intact cells and to shed light on the formation mechanisms that govern their assembly. Surprisingly, dynamic and functional nanostructures have been identified within the signaling clusters. We expect that these novel methodologies, combined with older techniques, will shed new light on the nature of signaling clusters and their critical role in T-cell activation.


Assuntos
Complexos Multiproteicos/metabolismo , Nanoestruturas , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Humanos , Ativação Linfocitária , Microscopia/métodos , Microscopia/tendências , Agregação de Receptores , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia
6.
Biochim Biophys Acta ; 1853(4): 810-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25300584

RESUMO

The T cell antigen receptor (TCR) has been shown to cluster both before and upon engagement with cognate antigens. However, the effect of TCR clustering on its activation remains poorly understood. Here, we used two-color photo-activated localization microscopy (PALM) to visualize individual molecules of TCR and ZAP-70, as a marker of TCR activation and phosphorylation, at the plasma membrane of uniformly activated T cells. Imaging and second-order statistics revealed that ZAP-70 recruitment and TCR activation localized inside TCR clusters. Live cell PALM imaging showed that the extent of localized TCR activation decreased, yet remained significant, with cell spreading. Using dynamic modeling and Monte-Carlo simulations we evaluated possible mechanisms of localized TCR activation. Our simulations indicate that localized TCR activation is the result of long-range cooperative interactions between activated TCRs, or localized activation by Lck and Fyn. Our results demonstrate the role of molecular clustering in cell signaling and activation, and are relevant to studying a wide range of multi-molecular complexes. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.


Assuntos
Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Sobrevivência Celular , Análise por Conglomerados , Humanos , Células Jurkat , Cinética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Microscopia , Modelos Imunológicos , Fosforilação , Conformação Proteica , Transporte Proteico , Receptores de Antígenos de Linfócitos T/química , Linfócitos T/citologia , Linfócitos T/imunologia , Proteína-Tirosina Quinase ZAP-70/metabolismo
7.
Methods ; 59(3): 261-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23266704

RESUMO

Multi-molecular protein complexes are critical to many cellular functions, including signaling, DNA transcription and enzymatic reactions. In spite of their importance, current research techniques such as biochemistry and diffraction-limited microscopy cannot resolve the heterogeneity and nanoscale organization of protein complexes in intact cells. Here we describe a technique that enables the study of multi-molecular protein complexes at the single molecule level in intact cells. The technique uses photoactivated localization microscopy (PALM) to resolve individual proteins with a resolution down to 20nm in intact cells, and second-order statistics to study the spatial interactions of the proteins. We demonstrate the feasibility of this technique by studying signaling complexes that form in activated T cells. We first use single color PALM imaging and univariate second-order statistics to resolve the clustering of Linker for Activation of T cells (LAT) at the plasma membrane (PM) of the cells. We then use two color PALM and bivariate second-order statistics to resolve the interaction of LAT with key interacting proteins. We discuss potential caveats in studying molecular clustering and the robustness of the technique to study bimolecular interactions. Our proposed technique, combined with older techniques, could help shed new light on the nature of multimolecular protein complexes and their significance to cell function.


Assuntos
Microscopia de Fluorescência/métodos , Complexos Multiproteicos/metabolismo , Mapeamento de Interação de Proteínas , Proteínas/metabolismo
8.
Methods Mol Biol ; 2654: 149-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106181

RESUMO

Physical interfaces mediate interactions between multiple types of cells. Despite the importance of such interfaces to the cells' function, their high-resolution optical imaging has been typically limited due to poor alignment of the interfaces relative to the optical plane of imaging. Here, we present a simple and robust method to align cell-cell interfaces in parallel to the coverslip by adhering the interacting cells to two opposing coverslips and bringing them into contact in a controlled and stable fashion. We demonstrate aberration-free high-resolution imaging of interfaces between live T cells and antigen-presenting cells, known as immune synapses, as an outstanding example. Imaging methods may include multiple diffraction-limited and super-resolution microscopy techniques (e.g., bright-field, confocal, STED, and dSTORM). Thus, our simple and widely compatible approach allows imaging with high- and super-resolution the intricate structure and molecular organization within a variety of cell-cell interfaces.


Assuntos
Células Apresentadoras de Antígenos , Microscopia , Microscopia/métodos , Imagem Óptica , Sinapses , Linfócitos T
9.
Cells ; 12(14)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37508565

RESUMO

The mechanical properties of living cells, including their shape, rigidity, and internal dynamics play a crucial role in their physiology and pathology. Still, the relations between the physiological cell state and its rigidity and surface vibrations remain poorly understood. Here, we have employed AFM measurements on T cells and found a negative relation between cell surface stiffness and its vibrations. Blocking T-type Ca++-channels using Mibefradil reduced cortical actin tension in these cells and enhanced their membrane vibrations and dissipation of intracellular mechanical work to the cell surroundings. We also found increased vibrations of cell membranes in five different malignant cells lines derived from T cell leukemia, lung, prostate, bladder, and melanoma cancers, as compared to their corresponding benign cells. This was demonstrated by utilizing TIRF microscopy in single cells and dynamic laser speckles measurements in an in vitro model of multiple cells in a tissue. Our results show that cell membrane vibrations and dissipation of mechanical work are higher in malignant cells relative to benign cells. Accordingly, these properties may be used to detect and monitor cellular and tissue malignancies.


Assuntos
Neoplasias , Vibração , Humanos , Membrana Celular/metabolismo , Mibefradil , Actinas/metabolismo , Linhagem Celular
10.
Cells ; 12(18)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759484

RESUMO

T cells expressing chimeric antigen receptors (CARs) are at the forefront of clinical treatment of cancers. Still, the nanoscale organization of CARs at the interface of CAR-Ts with target cells, which is essential for TCR-mediated T cell activation, remains poorly understood. Here, we studied the nanoscale organization of CARs targeting CD138 proteoglycans in such fixed and live interfaces, generated optimally for single-molecule localization microscopy. CARs showed significant self-association in nanoclusters that was enhanced in interfaces with on-target cells (SKOV-3, CAG, FaDu) relative to negative cells (OVCAR-3). CARs also segregated more efficiently from the abundant membrane phosphatase CD45 in CAR-T cells forming such interfaces. CAR clustering and segregation from CD45 correlated with the effector functions of Ca++ influx and target cell killing. Our results shed new light on the nanoscale organization of CARs on the surfaces of CAR-Ts engaging on- and off-target cells, and its potential significance for CAR-Ts' efficacy and safety.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Humanos , Feminino , Receptores de Antígenos Quiméricos/metabolismo , Apoptose , Linhagem Celular Tumoral , Sinapses/metabolismo
11.
iScience ; 25(11): 105282, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304112

RESUMO

NRas is a key mediator of the mitogenic pathway in normal cells and in cancer cells. Its dynamics and nanoscale organization at the plasma membrane (PM) facilitate its signaling. Here, we used two-color photoactivated localization microscopy to resolve the organization of individual NRas and associated signaling proteins in live melanoma cells, with resolution down to ∼20 nm. Upon EGF activation, a fraction of NRas and BRAF (dis)assembled synchronously at the PM in co-clusters. NRas and BRAF clusters associated with GPI-enriched domains, serving as possible nucleation sites for these clusters. NRas and BRAF association in mutual clusters was reduced by the NRas farnesylation inhibitor lonafarnib, yet enhanced by the BRAF inhibitor vemurafenib. Surprisingly, dispersed NRas molecules associated with the periphery of self-clusters of either Grb2 or NF1. Thus, NRas-mediated signaling, which is critical in health and disease, is regulated by dynamic interactions with functional clusters of BRAF or other related proteins at the PM.

12.
Chemphyschem ; 12(3): 696-703, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21271633

RESUMO

Intramolecular dynamics in the denatured state of a protein are of importance for protein folding. Native-like contact formation within the ensemble of denatured conformations of a protein may guide its transformation towards the native conformation. The efficiency of folding is thus dependent on the diffusion of chain fragments, which facilitates contact formation. Herein we investigate intramolecular diffusion of denatured molecules of the small two-state-folding protein L with fluorescence correlation spectroscopy (FCS). We utilize the specific quenching of the fluorescence of the oxazine dye Atto655 labeling a cysteine at position 64 (the C-terminus of the protein) by the side chain of a tryptophan at position 47. FCS measurements allow us to probe processes ranging in timescales from tens of nanoseconds to seconds. Two fast photophysical processes can be distinguished in the fluorescence correlation curves. The slower of the two is found to be due to triplet dynamics, while the faster process is attributed to the quenching of the Atto655 by the tryptophan upon transient ground-state complex formation. We study the dependence of the intrachain dynamics of the denatured protein on the concentration of the denaturant guanidinium chloride (GdmCl), and extract complex association and dissociation rates. While the dissociation rate does not depend on the denaturant, the association rate decreases as denaturant concentration is increased from 3 to 7 M GdmCl. This decrease in contact formation rate tracks the expansion of denatured protein L, measured in our previous work. Thus, the intramolecular diffusion coefficient calculated from the results is found to be essentially independent of the denaturant concentration over this range, even as the protein expands by more than 20%.


Assuntos
Proteínas de Bactérias/química , Difusão , Transporte de Elétrons , Guanidina/química , Desnaturação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência , Triptofano/química
13.
Front Cell Dev Biol ; 9: 590655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178972

RESUMO

Mechanical vibrations affect multiple cell properties, including its diffusivity, entropy, internal content organization, and thus-function. Here, we used Differential Interference Contrast (DIC), confocal, and Total Internal Reflection Fluorescence (TIRF) microscopies to study mechanical vibrations in live (Jurkat) T cells. Vibrations were measured via the motion of intracellular particles and plasma membrane. These vibrations depend on adenosine triphosphate (ATP) consumption and on Myosin II activity. We then used spectral analysis of these vibrations to distinguish the effects of thermal agitation, ATP-dependent mechanical work and cytoskeletal visco-elasticity. Parameters of spectral analyses could be related to mean square displacement (MSD) analyses with specific advantages in characterizing intracellular mechanical work. We identified two spectral ranges where mechanical work dominated vibrations of intracellular components: 0-3 Hz for intracellular particles and the plasma-membrane, and 100-150 Hz for the plasma-membrane. The 0-3 Hz vibrations of the cell membrane that we measured in an experimental model of immune synapse (IS) are expected to affect the IS formation and function in effector cells. It may also facilitate immunological escape of extensively vibrating malignant cells.

14.
Cancer Res ; 81(5): 1279-1292, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355187

RESUMO

Hotspot mutations of the oncogenes BRAF and NRas are the most common genetic alterations in cutaneous melanoma. Still, the nanoscale organization and signal coupling of these proteins remain incompletely understood, particularly upon expression of oncogenic NRas mutants. Here we employed single-molecule localization microscopy to study the nanoscale organization of NRas and BRAF at the plasma membrane (PM) of melanoma cells. NRas and BRAF resided in self-clusters that did not associate well in resting cells. In EGF-activated cells, NRas clusters became more diffused while overall protein levels at the PM increased; thus allowing enhanced association of NRas and BRAF and downstream signaling. In multiple melanoma cell lines, mutant NRas resided in more pronounced self-clusters relative to wild-type (WT) NRas yet associated more with the clustered and more abundant BRAF. In cells resistant to trametinib, a clinical MEK inhibitor (MEKi), a similar coclustering of NRas and BRAF was observed upon EGF activation. Strikingly, treatment of cells expressing mutant NRas with trametinib reversed the effect of mutant NRas expression by restoring the nonoverlapping self-clusters of NRas and BRAF and by reducing their PM levels and elevated pERK levels caused by mutant NRas. Our results indicate a new mechanism for signal regulation of NRas in melanoma through its nanoscale dynamic organization and a new mechanism for MEKi function in melanoma cells carrying NRas mutations but lacking MEK mutations. SIGNIFICANCE: Nanoscale dynamic organization of WT and mutant NRas relative to BRAF serves as a regulatory mechanism for NRas signaling and may be a viable therapeutic target for its sensitivity to MEKi.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , GTP Fosfo-Hidrolases/genética , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Proteínas de Membrana/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Imagem Individual de Molécula , Melanoma Maligno Cutâneo
15.
Commun Biol ; 4(1): 439, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795833

RESUMO

Cell-cell interfaces convey mechanical and chemical information in multicellular systems. Microscopy has revealed intricate structure of such interfaces, yet typically with limited resolution due to diffraction and unfavourable orthogonal orientation of the interface to the coverslip. We present a simple and robust way to align cell-cell interfaces in parallel to the coverslip by adhering the interacting cells to two opposing coverslips. We demonstrate high-quality diffraction-limited and super-resolution imaging of interfaces (immune-synapses) between fixed and live CD8+ T-cells and either antigen presenting cells or melanoma cells. Imaging methods include bright-field, confocal, STED, dSTORM, SOFI, SRRF and large-scale tiled images. The low background, lack of aberrations and enhanced spatial stability of our method relative to existing cell-trapping techniques allow use of these methods. We expect that the simplicity and wide-compatibility of our approach will allow its wide dissemination for super-resolving the intricate structure and molecular organization in a variety of cell-cell interfaces.


Assuntos
Linfócitos T CD8-Positivos/citologia , Microscopia/métodos , Análise Custo-Benefício , Microscopia/economia , Microscopia/instrumentação
16.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951586

RESUMO

Tight junctions (TJs) between blood-brain barrier (BBB) endothelial cells construct a robust physical barrier, whose damage underlies BBB dysfunctions related to several neurodegenerative diseases. What makes these highly specialized BBB-TJs extremely restrictive remains unknown. Here, we use super-resolution microscopy (dSTORM) to uncover new structural and functional properties of BBB TJs. Focusing on three major components, Nano-scale resolution revealed sparse (occludin) vs. clustered (ZO1/claudin-5) molecular architecture. In mouse development, permeable TJs become first restrictive to large molecules, and only later to small molecules, with claudin-5 proteins arrangement compacting during this maturation process. Mechanistically, we reveal that ZO1 clustering is independent of claudin-5 in vivo. In contrast to accepted knowledge, we found that in the developmental context, total levels of claudin-5 inversely correlate with TJ functionality. Our super-resolution studies provide a unique perspective of BBB TJs and open new directions for understanding TJ functionality in biological barriers, ultimately enabling restoration in disease or modulation for drug delivery.


Assuntos
Barreira Hematoencefálica/citologia , Microscopia/métodos , Junções Íntimas/fisiologia , Animais , Camundongos , Camundongos Endogâmicos ICR , Microscopia/classificação
17.
Sci Rep ; 10(1): 16212, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004828

RESUMO

Single-molecule-localization-microscopy (SMLM) enables superresolution imaging of biological samples down to ~ 10-20 nm and in single molecule detail. However, common SMLM reconstruction largely disregards information embedded in the entire intensity trajectories of individual emitters. Here, we develop and demonstrate an approach, termed time-correlated-SMLM (tcSMLM), that uses such information for enhancing SMLM reconstruction. Specifically, tcSMLM is shown to increase the spatial resolution and fidelity of SMLM reconstruction of both simulated and experimental data; esp. upon acquisition under stringent conditions of low SNR, high acquisition rate and high density of emitters. We further provide detailed guidelines and optimization procedures for effectively applying tcSMLM to data of choice. Importantly, our approach can be readily added in tandem to multiple SMLM and related superresolution reconstruction algorithms. Thus, we expect that our approach will become an effective and readily accessible tool for enhancing SMLM and superresolution imaging.

18.
Prog Neurobiol ; 191: 101820, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32437834

RESUMO

Timothy syndrome (TS) is a neurodevelopmental disorder caused by mutations in the pore-forming subunit α11.2 of the L-type voltage-gated Ca2+-channel Cav1.2, at positions G406R or G402S. Although both mutations cause cardiac arrhythmias, only Cav1.2G406R is associated with the autism-spectrum-disorder (ASD). We show that transcriptional activation by Cav1.2G406R and Cav1.2G402S is driven by membrane depolarization through the Ras/ERK/CREB pathway in a process called excitation-transcription (ET) coupling, as previously shown for wt Cav1.2. This process requires the presence of the intracellular ß-subunit of the channel. We found that only the autism-associated mutant Cav1.2G406R, as opposed to the non-autistic mutated channel Cav1.2G402S, exhibits a depolarization-independent CREB phosphorylation, and spontaneous transcription of cFos and MeCP2. A leftward voltage-shift typical of Cav1.2G406R activation, increases channel opening at subthreshold potentials, resulting in an enhanced channel activity, as opposed to a rightward shift in Cav1.2G402S. We suggest that the enhanced spontaneous Cav1.2G406R activity accounts for the increase in basal transcriptional activation. This uncontroled transcriptional activation may result in the manifestation of long-term dysregulations such as autism. Thus, gating changes provide a mechanistic framework for understanding the molecular events underlying the autistic phenomena caused by the G406R Timothy mutation. They might clarify whether a constitutive transcriptional activation accompanies other VGCC that exhibit a leftward voltage-shift of activation and are also associated with long-term cognitive disorders.


Assuntos
Transtorno do Espectro Autista , Canais de Cálcio Tipo L/fisiologia , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células HEK293 , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Mutação , Transdução de Sinais/genética , Sindactilia/genética , Sindactilia/metabolismo , Sindactilia/fisiopatologia , Ativação Transcricional/genética
19.
Biophys J ; 97(3): 875-85, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19651046

RESUMO

Studies of protein-protein interactions, carried out in polymer solutions, are designed to mimic the crowded environment inside living cells. It was shown that crowding enhances oligomerization and polymerization of macromolecules. Conversely, we have shown that crowding has only a small effect on the rate of association of protein complexes. Here, we investigated the equilibrium effects of crowding on protein heterodimerization of TEM1-beta-lactamase with beta-lactamase inhibitor protein (BLIP) and barnase with barstar. We also contrasted these with the effect of crowding on the weak binding pair CyPet-YPet. We measured the association and dissociation rates as well as the affinities and thermodynamic parameters of these interactions in polyethylene glycol and dextran solutions. For TEM1-BLIP and for barnase-barstar, only a minor reduction in association rate constants compared to that expected based on solution viscosity was found. Dissociation rate constants showed similar levels of reduction. Overall, this resulted in a binding affinity that is quite similar to that in aqueous solutions. On the other hand, for the CyPet-YPet pair, aggregation, and not enhanced dimerization, was detected in polyethylene glycol solutions. The results suggest that typical crowding agents have only a small effect on specific protein-protein dimerization reactions. Although crowding in the cell results from proteins and other macromolecules, one may still speculate that binding in vivo is not very different from that measured in dilute solutions.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Polímeros/química , Ribonucleases/química , Inibidores de beta-Lactamases , beta-Lactamases/química , Proteínas de Bactérias/metabolismo , Calorimetria , Dextranos/química , Etilenoglicol/química , Transferência Ressonante de Energia de Fluorescência , Glucose/química , Glucose/metabolismo , Cinética , Luz , Polietilenoglicóis/química , Ligação Proteica , Multimerização Proteica , Ribonucleases/metabolismo , Espalhamento de Radiação , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Viscosidade , beta-Lactamases/metabolismo
20.
ACS Nano ; 13(1): 346-356, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30485065

RESUMO

The mechanical properties of cells affect their function, in sensing, development, and motility. However, the rigidity of the cell surface and its correlation to its local topography remain poorly understood. Here, we applied quantitative imaging AFM to capture high-resolution force maps at the surface of nonadherent T cells. Using this method, we found a positive topography-rigidity correlation at the cells' surface, as opposed to a negative correlation at the surface of adherent cells. We then used 3D single-molecule localization microscopy of the membrane and cortical actin and an actin-perturbing drug to implicate actin involvement in the positive rigidity-topography correlation in T cells. Our results clearly reveal the variability of cell-surface rigidity and its underlying mechanism, showing a functional role for cortical actin in the PM protrusions of T cells, since they are locally more rigid than their surroundings. These findings suggest the possible functional role of membrane protrusions as mechanosensors.


Assuntos
Membrana Celular/ultraestrutura , Imagem Individual de Molécula , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Membrana Celular/química , Elasticidade , Células HEK293 , Humanos , Imageamento Tridimensional , Células Jurkat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA