Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 49(8): 2735-2745, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35089375

RESUMO

PURPOSE: Tumor heterogeneity limits the predictive value of PD-L1 expression and influences the outcomes of the immunohistochemical assay for therapy-induced changes in PD-L1 levels. This study aimed to determine the predictive value of PD-L1 for non-small cell lung carcinoma (NSCLC), thereby developing imaging agents to non-invasively image and examine the effect of the therapeutic response to PD-L1 blockade therapy. METHODS: A cohort of 102 patients with lung cancer was analyzed, and the prognostic significance of PD-L1 expression level was investigated. Recombinant human PD-1 ECD protein (rhPD1) was expressed, purified, and labeled with 64Cu for the evaluation of PD-L1 status in tumors. Mice subcutaneously bearing PD-L1 high-expressing tumor HCC827 and PD-L1 low-expressing tumor A549 were used to determine tracer-target specificity and examine the effect of therapeutic response to PD-L1 blockade therapy. RESULTS: PD-L1 was proved to be a good prognosis marker for NSCLC, and its expression was correlated with the histology of NSCLC. PET imaging revealed high tumor accumulation of 64Cu-NOTA-rhPD1 in HCC827 tumors (9.0 ± 0.5%ID/g), whereas it was 3.2 ± 0.4%ID/g in A549 tumors at 3 h post-injection. The lower tumor uptake (3.1 ± 0.3%ID/g) of 64Cu-labeled denatured rhPD1 in HCC827 tumors at 3 h post-injection (p < 0.001) demonstrated the target specificity of 64Cu-NOTA-rhPD1. Furthermore, PET showed that 64Cu-NOTA-rhPD1 sensitively monitored treatment-related changes in PD-L1 expression, and seemed to be superior to [18F]FDG. CONCLUSION: We identified PD-L1 as a good prognosis marker for surgically resected NSCLC and developed the PET tracer 64Cu-NOTA-rhPD1 with high target specificity for PD-L1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Receptor de Morte Celular Programada 1
2.
Nanomedicine ; 25: 102169, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32059873

RESUMO

Generation of durable tumor-specific immune response without isolation and expansion of dendritic cells or T cells ex vivo remains a challenge. In this study, we investigated the impact of nanoparticle-mediated photothermolysis in combination with checkpoint inhibition on the induction of systemic antitumor immunity. Photothermolysis based on near-infrared light-absorbing copper sulfide nanoparticles and 15-ns laser pulses combined with the immune checkpoint inhibitor anti-PD-1 antibody (αPD-1) increased tumor infiltration by antigen-presenting cells and CD8-positive T lymphocytes in the B16-OVA mouse model. Moreover, combined photothermolysis, polymeric conjugate of the Toll-like receptor 9 agonist CpG, and αPD-1 significantly prolonged mouse survival after re-inoculation of tumor cells at a distant site compared to individual treatments alone in the poorly immunogenic syngeneic ID8-ip1-Luc ovarian tumor model. Thus, photothermolysis is a promising interventional technique that synergizes with Toll-like receptor 9 agonists and immune checkpoint inhibitors to enhance the abscopal effect in tumors.


Assuntos
Melanoma Experimental/tratamento farmacológico , Terapia Fototérmica , Receptor de Morte Celular Programada 1/genética , Receptor Toll-Like 9/genética , Animais , Terapia Combinada , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor Toll-Like 9/agonistas
3.
Bioconjug Chem ; 30(10): 2675-2683, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31560538

RESUMO

Exosomes have attracted tremendous attention due to their important role in physiology, pathology, and oncology, as well as promising potential in biomedical applications. Although great efforts have been dedicated to investigating their biological properties and applications as natural cancer drug-delivery systems, the systemic biodistribution of exosomes remains underexplored. In addition, exosome-based drug delivery is inevitably hindered by the robust liver clearance, leading to suboptimal tumor retention and therapeutic efficiency. In this study, we report one of the first examples using in vivo positron emission tomography (PET) for noninvasive monitoring of copper-64 (64Cu)-radiolabeled polyethylene glycol (PEG)-modified exosomes, achieving excellent imaging quality and quantitative measurement of blood residence and tumor retention. PEGylation not only endowed exosomes with a superior pharmacokinetic profile and great accumulation in the tumor versus traditionally reported native exosomes but also reduced premature hepatic sequestration and clearance of exosomes, findings that promise enhanced therapeutic delivery efficacy and safety in future studies. More importantly, this study provides important guidelines about surface engineering, radiochemistry, and molecular imaging in obtaining accurate and quantitative biodistribution information on exosomes, which may benefit future exploration in the realm of exosomes.


Assuntos
Radioisótopos de Cobre/química , Exossomos/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Camundongos , Polietilenoglicóis/farmacocinética , Distribuição Tecidual
4.
Bioconjug Chem ; 29(12): 4062-4071, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30404438

RESUMO

Copper sulfide (CuS) nanoparticles have been considered one of the most clinical relevant nanosystems because of their straightforward chemistry, small particle size, low toxicity, and intrinsic theranostic characteristics. In our previous studies, radioactive [64Cu]CuS nanoparticles were successfully developed to be used as efficient radiotracers for positron emission tomography and for photothermal ablation therapy of cancer cells using near-infrared laser irradiation. However, the major challenge of CuS nanoparticles as a theranostic platform is the lack of a means for effective targeted delivery to the tumor site. To overcome this challenge, we designed and synthesized angiogenesis-targeting [64Cu]CuS nanoparticles, which are coupled with cyclic RGDfK peptide [c(RGDfK)] through polyethylene glycol (PEG) linkers using click chemistry. In assessing their tumor-targeting efficacy, we found that the tumor uptakes of [64Cu]CuS-PEG-c(RGDfK) nanoparticles at 24 h after intravenous injection were significantly greater (8.6% ± 1.4% injected dose/gram of tissue) than those of nontargeted [64Cu]CuS-PEG nanoparticles (4.3% ± 1.2% injected dose/gram of tissue, p < 0.05). Irradiation of tumors in mice administered [64Cu]CuS-PEG-c(RGDfK) nanoparticles induced 98.7% necrotic areas. In contrast, irradiation of tumors in mice administered nontargeted CuS-PEG nanoparticles induced 59% necrotic areas ( p < 0.05). The angiogenesis-targeting [64Cu]CuS nanoparticles may serve as a promising platform for image-guided ablation therapy with high efficacy and minimal side effects in future clinical translation of this novel class of multifunctional nanomaterials.


Assuntos
Radioisótopos de Cobre/química , Cobre/química , Integrina alfaVbeta3/química , Terapia a Laser , Nanopartículas Metálicas/química , Neoplasias Experimentais/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Células HEK293 , Humanos , Camundongos , Peptídeos Cíclicos/química , Polietilenoglicóis/química
5.
Cytokine ; 107: 105-112, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452720

RESUMO

ALT-803 is a fusion protein complex consisting of an interleukin (IL)-15 superagonist and a dimeric IL-15 receptor alpha sushi domain IgG1 Fc fusion protein. When administered to mice, ALT-803 is capable of inducing natural killer (NK) and CD8+ T cell proliferation and activation, and effectively promoting potent anti-tumor responses. Currently, ALT-803 is in clinical trials for treatment of various solid tumors and hematological malignancies. In the initial phase of these clinical studies, intravenous (iv) injection was used according to the route used in pre-clinical efficacy studies. In order to evaluate the possible advantage of subcutaneous (sc) injection versus iv injection, this study compared the biological activity of the two treatment regimens of ALT-803 in pre-clinical in vivo models. The pharmacokinetics, immune stimulation, and anti-tumor efficacy of iv and sc injection routes of ALT-803 in C57BL/6 mice were compared. The half-life of ALT-803 was 7.5 h for iv versus 7.7 h for sc with the maximal detected serum concentration of ALT-803 to be 3926 ng/ml at 0.5 h time-point following iv injection versus 495 ng/ml at 16 h post sc injection. Biodistribution studies indicated that sc ALT-803, similarly to iv ALT-803 as previously reported, has a greater tissue distribution and longer residence time in lymphoid tissues compared to recombinant IL-15. Notably, ALT-803 when administered either iv or sc induced comparable proliferation and activation of CD8+ T and NK cells and resulted in similar reductions of tumor burden. A toxicity study of mice receiving multiple injections of ALT-803 for 4 weeks by iv or sc routes revealed equivalent immune-related changes. The gradual absorbance into the blood stream and lower maximal blood levels of ALT-803 in sc-injected mice, along with similar anti-tumor efficacy support the administration of ALT-803 by sc injection in patients with various malignancies and infectious diseases.


Assuntos
Interleucina-15/metabolismo , Proteínas/administração & dosagem , Administração Intravenosa/métodos , Animais , Antineoplásicos/administração & dosagem , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Injeções Subcutâneas/métodos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
J Biol Chem ; 291(46): 23869-23881, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650494

RESUMO

IL-15 and its receptor α (IL-15Rα) are co-expressed on antigen-presenting cells, allowing transpresentation of IL-15 to immune cells bearing IL-2RßγC and stimulation of effector immune responses. We reported previously that the high-affinity interactions between an IL-15 superagonist (IL-15N72D) and the extracellular IL-15Rα sushi domain (IL-15RαSu) could be exploited to create a functional scaffold for the design of multivalent disease-targeted complexes. The IL-15N72D·IL-15RαSuFc complex, also known as ALT-803, is a multimeric complex constructed by fusing IL-15N72D·IL-15RαSu to the Fc domain of IgG1. ALT-803 is an IL-15 superagonist complex that has been developed as a potent antitumor immunotherapeutic agent and is in clinical trials. Here we describe the creation of a novel fusion molecule, 2B8T2M, using the ALT-803 scaffold fused to four single chains of the tumor-targeting monoclonal antibody rituximab. This molecule displays trispecific binding activity through its recognition of the CD20 molecule on tumor cells, stimulation via IL-2RßγC displayed on immune effector cells, and binding to Fcγ receptors on natural killer cells and macrophages. 2B8T2M activates natural killer cells to enhance antibody-dependent cellular cytotoxicity, mediates complement-dependent cytotoxicity, and induces apoptosis of B-lymphoma cells. Compared with rituximab, 2B8T2M exhibits significantly stronger antitumor activity in a xenograft SCID mouse model and depletes B cells in cynomolgus monkeys more efficiently. Thus, ALT-803 can be modified as a functional scaffold for creating multispecific, targeted IL-15-based immunotherapeutic agents and may serve as a novel platform to improve the antitumor activity and clinical efficacy of therapeutic antibodies.


Assuntos
Imunidade Celular/efeitos dos fármacos , Interleucina-15/agonistas , Células Matadoras Naturais/imunologia , Linfoma de Células B/tratamento farmacológico , Proteínas , Proteínas Recombinantes de Fusão , Rituximab , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos SCID , Proteínas/química , Proteínas/genética , Proteínas/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Rituximab/química , Rituximab/genética , Rituximab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Angew Chem Int Ed Engl ; 56(11): 2889-2892, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28170126

RESUMO

Macrocyclic chelators have been widely employed in the realm of nanoparticle-based positron emission tomography (PET) imaging, whereas its accuracy remains questionable. Here, we found that 64 Cu can be intrinsically labeled onto nanographene based on interactions between Cu and the π electrons of graphene without the need of chelator conjugation, providing a promising alternative radiolabeling approach that maintains the native in vivo pharmacokinetics of the nanoparticles. Due to abundant π bonds, reduced graphene oxide (RGO) exhibited significantly higher labeling efficiency in comparison with graphene oxide (GO) and exhibited excellent radiostability in vivo. More importantly, nonspecific attachment of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) on nanographene was observed, which revealed that chelator-mediated nanoparticle-based PET imaging has its inherent drawbacks and can possibly lead to erroneous imaging results in vivo.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Quelantes/química , Radioisótopos de Cobre/química , Grafite/química , Nanopartículas/química , Tomografia por Emissão de Pósitrons , Animais , Cobre/química , Feminino , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Camundongos , Tamanho da Partícula
9.
Adv Funct Mater ; 26(13): 2185-2197, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27110230

RESUMO

Multifunctional theranostic agents have become rather attractive to realize image-guided combination cancer therapy. Herein, we develop a novel method to synthesize Bi2Se3 nanosheets decorated with mono-dispersed FeSe2 nanoparticles (FeSe2/Bi2Se3) for tetra-modal image-guided combined photothermal & radiation tumor therapy. Interestingly, upon addition of Bi(NO3)3, pre-made FeSe2 nanoparticles via cation exchange would be gradually converted into Bi2Se3 nanosheets, on which remaining FeSe2 nanoparticles are decorated. The yielded FeSe2/Bi2Se3 composite-nanostructures were then modified with polyethylene glycol (PEG). Taking advantages of the high r2 relaxivity of FeSe2, the X-ray attenuation ability of Bi2Se3, the strong near-infrared (NIR) optical absorbance of the whole nanostructure, as well as the chelate-free radiolabeling of 64Cu on FeSe2/Bi2Se3-PEG, in vivo magnetic resonance (MR)/computer tomography (CT)/photoacoustic (PA)/position emission tomography (PET) multimodal imaging was carried out, revealing efficient tumor homing of FeSe2/Bi2Se3-PEG after intravenous injection. Utilizing the intrinsic physical properties of FeSe2/Bi2Se3-PEG, in vivo photothermal & radiation therapy to achieve synergistic tumor destruction was then realized, without causing obvious toxicity to the treated animals. Our work presents a unique method to synthesize composite-nanostructures with highly integrated functionalities, promising not only for nano-biomedicine, but also potentially for other different nanotechnology fields.

10.
Small ; 12(20): 2775-82, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27062146

RESUMO

Optical imaging has been the primary imaging modality for nearly all of the renal clearable nanoparticles since 2007. Due to the tissue depth penetration limitation, providing accurate organ kinetics non-invasively has long been a huge challenge. Although a more quantitative imaging technique has been developed by labeling nanoparticles with single-photon emission computed tomography (SPECT) isotopes, the low temporal resolution of SPECT still limits its potential for visualizing the rapid dynamic process of renal clearable nanoparticles in vivo. The dynamic positron emission tomography (PET) imaging of renal clearable gold (Au) nanoparticles by labeling them with copper-64 ((64) Cu) to form (64) Cu-NOTA-Au-GSH is reported. Systematic nanoparticle synthesis and characterizations are performed to demonstrate the efficient renal clearance of as-prepared nanoparticles. A rapid renal clearance of (64) Cu-NOTA-Au-GSH is observed (>75%ID at 24 h post-injection) with its elimination half-life calculated to be less than 6 min, over 130 times shorter than previously reported similar nanoparticles. Dynamic PET imaging not only addresses the current challenges in accurately and non-invasively acquiring the organ kinetics, but also potentially provides a highly useful tool for studying renal clearance mechanism of other ultra-small nanoparticles, as well as the diagnosis of kidney diseases in the near future.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Rim/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Tomografia Computadorizada de Emissão de Fóton Único
12.
Eur J Nucl Med Mol Imaging ; 42(8): 1295-303, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25801992

RESUMO

PURPOSE: To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. METHODS: ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and (64)Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of (64)Cu-NOTA-ALT-836-Fab. RESULTS: ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of (64)Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. CONCLUSION: (64)Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management.


Assuntos
Fragmentos Fab das Imunoglobulinas/farmacologia , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Compostos Organometálicos/farmacocinética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Tromboplastina/metabolismo , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Radioisótopos de Cobre/química , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Compostos Organometálicos/síntese química , Compostos Radiofarmacêuticos/síntese química , Tromboplastina/genética , Tromboplastina/imunologia , Distribuição Tecidual
13.
Mol Pharm ; 12(2): 403-10, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25581441

RESUMO

Selective overexpression of follicle-stimulating hormone receptor (FSHR) inside the vascular endothelium of tumors has been confirmed to play critical roles in angiogenesis, tumor invasion, and metastases. The expression level of FSHR correlates strongly with the response of tumors to antiangiogenic therapies. In this study, an immunoPET tracer was developed for imaging of FSHR in different cancer types. A monoclonal antibody (FSHR-mAb) against FSHR was conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and used for subsequent (64)Cu-labeling. NOTA-FSHR-mAb preserved FSHR specificity/affinity, confirmed by flow cytometry measurements. (64)Cu-labeling was successfully conducted with decent yields (∼25%) and high specific activity (0.93 GBq/mg). The uptake of (64)Cu-NOTA-FSHR-mAb was 3.6 ± 0.8, 13.2 ± 0.7, and 14.6 ± 0.4 %ID/g in FSHR-positive CAOV-3 tumors at 4, 24, and 48 h postinjection, respectively (n = 3), significantly higher (p < 0.05) than that in FSHR-negative SKOV-3 tumors (2.3 ± 1.2, 8.0 ± 0.9, and 9.1 ± 1.3 %ID/g at 4, 24, and 48 h postinjection, respectively (n = 3)) except at 4 h p.i. FSHR-relevant uptake of (64)Cu-NOTA-FSHR-mAb was also readily observed in other tumor types (e.g., triple-negative breast tumor MDA-MB-231 or prostate tumor PC-3). Histology studies showed universal FSHR expression in microvasculature of these four tumor types and also prominent expression in tumor cells of CAOV-3, PC-3, and MDA-MB-231. Correlations between tumor FSHR level and uptake of (64)Cu-NOTA-FSHR-mAb were witnessed in this study. FSHR-specific uptake of (64)Cu-NOTA-FSHR mAb in different tumors enables its applicability for future cancer theranostic applications and simultaneously establishes FSHR as a promising clinical target for cancer.


Assuntos
Diagnóstico por Imagem/métodos , Tomografia por Emissão de Pósitrons , Receptores do FSH/metabolismo , Animais , Neoplasias da Mama/diagnóstico , Linhagem Celular Tumoral , Radioisótopos de Cobre , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos , Neovascularização Patológica , Neoplasias Ovarianas/diagnóstico , Neoplasias da Próstata/diagnóstico
14.
Bioconjug Chem ; 25(9): 1609-19, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25117569

RESUMO

Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.


Assuntos
Pesquisa Biomédica , Engenharia Química/métodos , Grafite/química , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Grafite/uso terapêutico , Humanos , Propriedades de Superfície
15.
Mol Pharm ; 11(10): 3624-30, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25157758

RESUMO

Insulin-like growth factor 1 receptor (IGF1R) plays an important role in proliferation, apoptosis, angiogenesis, and tumor invasion. The expression level of IGF1R is related to resistance to several targeted therapies. The goal of this study was to develop an immunoPET tracer for imaging of IGF1R in prostate cancer. Murine antibodies against human IGF1R were generated in BALB/c mice, which were screened in IGF1R-positive MCF-7 cells using flow cytometry as well as biodistribution studies with multiple (64)Cu-labeled antibody clones. The antibody production method we adopted could readily produce milligram quantities of anti-IGF1R antibodies for in vivo studies. One antibody clone (1A2G11) with the highest affinity for IGF1R was selected and conjugated to NOTA for (64)Cu-labeling. NOTA-1A2G11 maintained IGF1R specificity/avidity based on flow cytometry. (64)Cu-labeling was achieved with good yield (>50%) and high specific activity (>1 Ci/µmol). Serial PET imaging revealed that uptake of (64)Cu-NOTA-1A2G11 was 2.8 ± 0.7, 10.2 ± 2.6, and 9.6 ± 1.7 %ID/g in IGF1R-positive DU-145 tumors at 4, 24, and 48 h postinjection, respectively (n = 3), significantly higher than that in IGF1R-negative LNCaP tumors (<3 %ID/g at each time point) except at 4 h postinjection. Histology studies showed strong correlations between IGF1R expression level in the prostate cancer tumor tissues and tumor uptake of (64)Cu-NOTA-1A2G11. Prominent, persistent, and IGF1R-specific uptake of (64)Cu-NOTA-1A2G11 in IGF1R-positive prostate tumors holds strong potential for future cancer diagnosis, prognosis, and therapy using this antibody.


Assuntos
Anticorpos Monoclonais , Neoplasias da Próstata/metabolismo , Receptor IGF Tipo 1/imunologia , Receptor IGF Tipo 1/metabolismo , Humanos , Masculino , Tomografia por Emissão de Pósitrons
16.
Adv Drug Deliv Rev ; 192: 114638, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462644

RESUMO

The exemplary progress of silica nanotechnology has attracted extensive attention across a range of biomedical applications such as diagnostics and imaging, drug delivery, and therapy of cancer and other diseases. Ultrasmall silica nanoparticles (USNs) have emerged as a particularly promising class demonstrating unique properties that are especially suitable for and have shown great promise in translational and clinical biomedical research. In this review, we discuss synthetic strategies that allow precise engineering of USNs with excellent control over size and surface chemistry, functionalization, and pharmacokinetic and toxicological profiles. We summarize the current state-of-the-art in the biomedical applications of USNs with a particular focus on select clinical studies. Finally, we illustrate long-standing challenges in the translation of inorganic nanotechnology, particularly in the context of ultrasmall nanomedicines, and provide our perspectives on potential solutions and future opportunities in accelerating the translation and widespread adoption of USN technology in biomedical research.


Assuntos
Pesquisa Biomédica , Nanopartículas , Humanos , Dióxido de Silício , Nanopartículas/química , Nanotecnologia/métodos , Nanomedicina
17.
Adv Drug Deliv Rev ; 198: 114865, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182699

RESUMO

The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imunoterapia/métodos , Imagem Molecular
18.
J Control Release ; 357: 472-483, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031740

RESUMO

Plant-derived vesicles (PDVs) are attractive for therapeutic applications, including as potential nanocarriers. However, a concern with oral delivery of PDVs is whether they would remain intact in the gastrointestinal tract. We found that 82% of cabbage PDVs were destroyed under conditions mimicking the upper digestive tract. To overcome this limitation, we developed a delivery method whereby lyophilized Eudragit S100-coated cabbage PDVs were packaged into a capsule (Cap-cPDVs). Lyophilization and suspension of PDVs did not have an appreciable impact on PDV structure, number, or therapeutic effect. Additionally, packaging the lyophilized Eudragit S100-coated PDVs into capsules allowed them to pass through the upper gastrointestinal tract for delivery into the colon better than did suspension of PDVs in phosphate-buffered saline. Cap-cPDVs showed robust therapeutic effect in a dextran sulfate sodium-induced colitis mouse model. These findings could have broad implications for the use of PDVs as orally delivered nanocarriers of natural therapeutic plant compounds or other therapeutics.


Assuntos
Colite , Camundongos , Animais , Concentração de Íons de Hidrogênio , Colite/induzido quimicamente , Colite/tratamento farmacológico , Ácidos Polimetacrílicos/química , Administração Oral , Sistemas de Liberação de Medicamentos
19.
ACS Omega ; 5(15): 8474-8482, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32337408

RESUMO

Purpose: Among the treatment options for pancreatic ductal adenocarcinoma (PDAC) are antibodies against the programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway. Positron emission tomography (PET) has been successfully used to assess PD-1/PD-L1 signaling in subcutaneous tumor models, but orthotopic tumor models are increasingly being recognized as a better option to accurately recapitulate human disease. However, when PET radiotracers have high uptake in the liver and spleen, it can obscure signals from the adjacent pancreas, making visualization of the response in orthotopic pancreatic tumors technically challenging. In this study, we first investigated the impact of radioisotope chelators on the biodistribution of 64Cu-labeled anti-PD-1 and anti-PD-L1 antibodies and compared the distribution profiles of anti-PD-1 and anti-PD-L1 antibodies. We then tested the hypothesis that co-injection of unlabeled antibodies reduces uptake of 64Cu-labeled anti-PD-L1 antibodies in the spleen and thereby permits accurate delineation of orthotopic pancreatic tumors in mice. Procedures: We established subcutaneous and orthotopic mouse models of PDAC using KRAS* murine pancreatic cancer cells with a doxycycline-inducible mutation of KRASG12D. We then (1) compared the biodistribution of 64Cu-labeled anti-PD-1 with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA) and 2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) used as the chelators in the orthotopic model; (2) compared the biodistribution of [64Cu]Cu-NOTA-anti-PD-1 and [64Cu]Cu-NOTA-anti-PD-L1 in the orthotopic model; and (3) imaged subcutaneous and orthotopic KRAS* tumors with [64Cu]Cu-NOTA-anti-PD-L1 with and without co-injection of unlabeled anti-PD-L1 as the blocking agent. Results: [64Cu]Cu-NOTA-anti-PD-L1 was a promising imaging probe. By co-injection of an excess of unlabeled anti-PD-L1, background signals of [64Cu]Cu-NOTA-anti-PD-L1 from the spleen were significantly reduced, leading to a clear delineation of orthotopic pancreatic tumors. Conclusions: Co-injection with unlabeled anti-PD-L1 is a useful method for PET imaging of PD-L1 expression in orthotopic pancreatic cancer models.

20.
ACS Appl Bio Mater ; 2(8): 3203-3211, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-33907729

RESUMO

Although multifunctional inorganic nanoparticles have been extensively explored for effective cancer diagnosis and therapy, their clinical translation has been greatly impeded because of significant uptake in the reticuloendothelial system and concerns about potential toxicity. In this study, we uncovered the thermosensitive biodegradability of CuS nanoparticles, which have classically been considered as stable in bulk state. Polyethylene glycol (PEG)-coated CuS nanoparticles (CuS-PEG) were well preserved at 4 ºC but were rapidly degraded at 37 ºC within 1 week in both in vitro and in vivo tests. Furthermore, real-time multispectral optoacoustic tomography, which is more convenient and accurate than traditional ex vivo analysis, was successfully employed to noninvasively demonstrate the biodegradability of CuS-PEG nanoparticles and dynamically monitor their tumor imaging capacity. The temperature-dependent controllable degradation profile and excellent tumor retention of CuS-PEG nanoparticles endows them with great potential for clinical applications since it ensures that the nanoparticles remain intact during production, transportation, and storage but degrade and clear from the body at physiological temperature after accomplishing sufficient diagnosis and therapeutic operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA